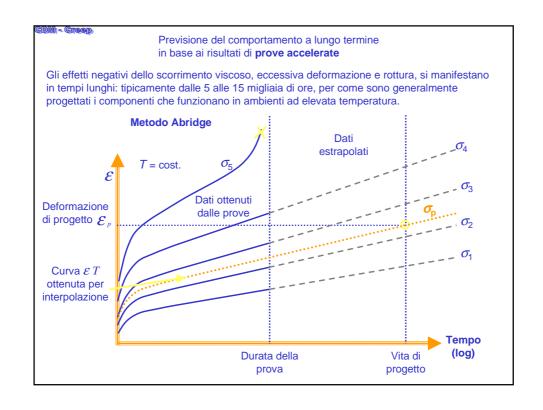


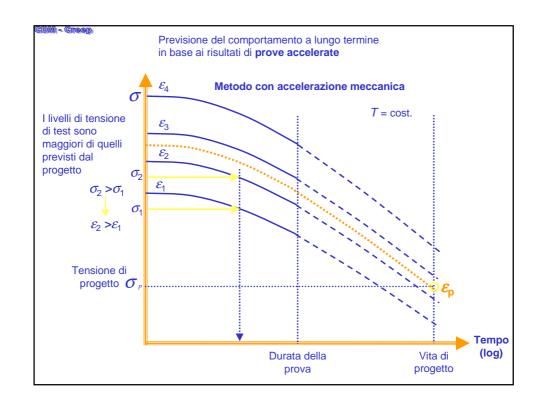
DIM - Cree

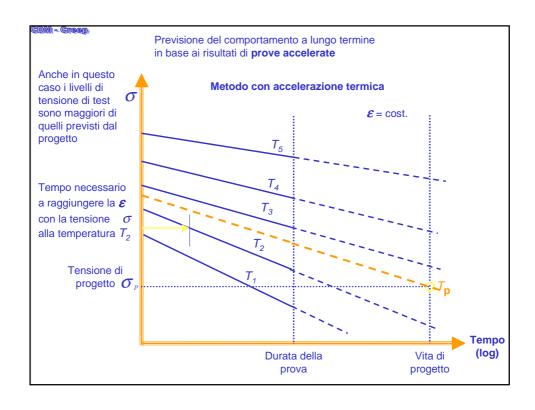
Una indicazione sul valore della temperatura, oltre la quale è opportuno prendere in considerazione il fenomeno del creep, è data dalla temperatura di fusione del materiale:

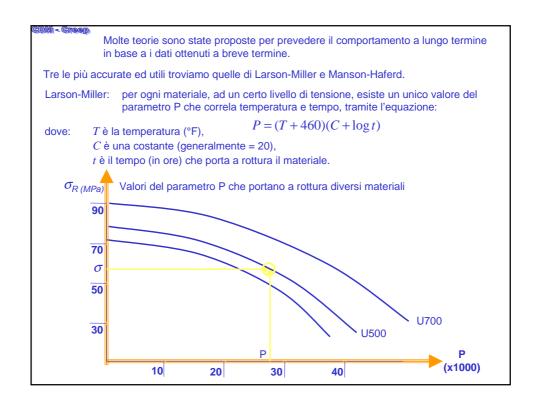
Temperature di fusione di alcuni materiali:

Materiale	Temperatura di fusione °C
Carburo di Afnio	3887
Grafite (sublimazione)	3500
Tungsteno	3370
Carburo di tungsteno	2867
Magnesia	2800
Molibdeno	2620
Boro	2300
Titanio	1795
Platino	1750
Silice	1728
Cromo	1650
Ferro	1540
Acciaio inossidabile	1450
Acciaio al carbonio	1400
Leghe di alluminio	660
Leghe di magnesio	650
Leghe di piombo	320









Molte teorie sono state proposte per prevedere il comportamento a lungo termine in base a i dati ottenuti a breve termine.

Tre le più accurate ed utili troviamo quelle di Larson-Miller e Manson-Haferd.

Manson-Haferd. per ogni materiale, ad un certo livello di tensione, esiste un unico valore del parametro P' che correla temperatura e tempo, tramite l'equazione:

dove: θ è la temperatura (°F),

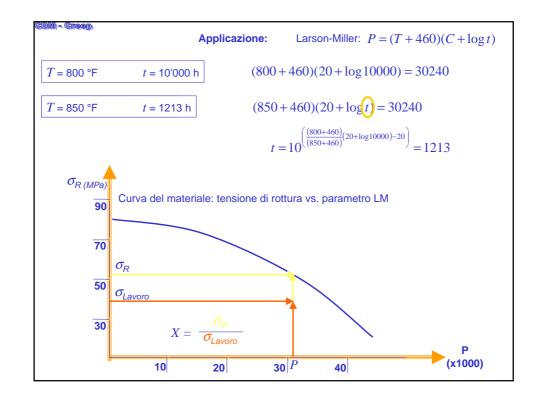
 $P' = \frac{\theta - \theta_0}{\log t - \log t_a}$

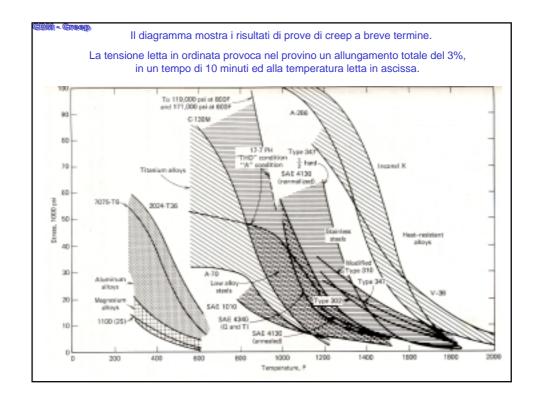
 θ_0 e t_a sono costanti dipendenti dal materiale,

t è il tempo (in ore) che porta a rottura il materiale.

Valori delle costanti del modello di Manson-Haferd per alcuni materiali

Materiale	Creep o Rottura	θ_{a}	log t _a
25-20 stainless steel	Rottura	100	14
25-20 stainless steel	Rottura	100	15
S-590 Alloy	Rottura	0	21
DM steel	Rottura	100	22
Inconel X	Rottura	100	24
Nimonic 80	Rottura	100	17
Nimonic 80	$\varepsilon_{\rm cr} = 0.2\%$	100	17





Tensione - deformazione - temperatura - tempo

Molte relazioni sono state proposte per correlare tra loro deformazione, tensione, temperatura e tempo

$$\varepsilon = f(\sigma, T, t)$$

Il comportamento a scorrimento viscoso di molti materiali può essere descritto da relazioni del tipo:

$$\varepsilon = At^a$$

 \mathcal{E} deformazione logaritmica dovuta al creep, t tempo

A, a costanti del materiale ricavate sperimentalmente

$$\dot{\varepsilon} = bt^{-n}$$

$$aA = b$$

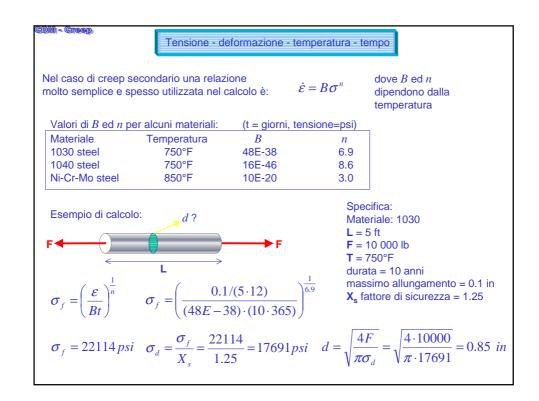
derivando rispetto al tempo si ha: $\frac{d\varepsilon}{dt} = \dot{\varepsilon} = aAt^{(a-1)}$ $\dot{\varepsilon} = bt^{-n}$ avendo posto: aA = b dove b, n sono caratteristiche del materiale che possono dipendere da: la composizione chimica, la temperatura, la tensione, il livello di deformazione raggiunto

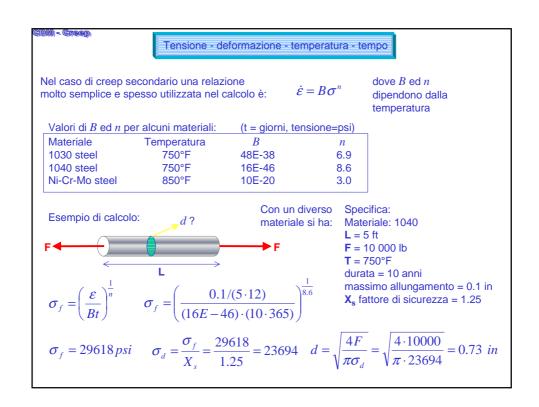
Il creep primario può essere rappresentato da una relazione del tipo: $\dot{\mathcal{E}} = C_1 \sigma^{C_2} \mathcal{E}^{C_3} e^{^{-C_4}\!\!/T}$

Nel caso di creep secondario può essere utilizzata una relazione del tipo:

$$\dot{\varepsilon} = C'_1 \sigma^{C'_2} e^{-C'_3/T}$$

dove le costanti C_n dipendono dal materiale e T indica la temperatura





edim - Cree

Tensione - deformazione - temperatura - tempo

Nel caso più generale è possibile utilizzare la seguente relazione:

$$\varepsilon = \frac{\sigma}{E} + k_1 \sigma^n + k_2 (1 - e^{-qt}) \sigma^n + k_3 t \sigma^p$$

deformazione elastica

deformazione plastica iniziale

creep primario

creep secondario

edin - Crea

Scorrimento viscoso nel caso di stato di tensione pluriassiale

Le relazioni costitutive in campo plastico, per uno stato triassiale di deformazione, possono essere scritte come segue:

$$\varepsilon_1 = \frac{1}{D} \left[\sigma_1 - \frac{1}{2} (\sigma_2 + \sigma_3) \right] \qquad \varepsilon_2 = \frac{1}{D} \left[\sigma_2 - \frac{1}{2} (\sigma_1 + \sigma_3) \right] \qquad \varepsilon_3 = \frac{1}{D} \left[\sigma_3 - \frac{1}{2} (\sigma_1 + \sigma_2) \right]$$

dove : $\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3$ sono le deformazioni logaritmiche

 $\sigma_1, \sigma_2, \sigma_3$ sono le tensioni "vere", ovvero calcolate in base alla sezione aggiornata

D è il modulo di plasticità,

dipendente dal valore della deformazione plastica raggiunta.

$$\frac{\varepsilon_1}{t} = \dot{\varepsilon}_1 = \frac{1}{Dt} \left[\sigma_1 - \frac{1}{2} (\sigma_2 + \sigma_3) \right]$$

Dividendo per il tempo

le precedenti espressioni si ottiene:

$$\frac{\varepsilon_2}{t} = \dot{\varepsilon}_2 = \frac{1}{Dt} \left[\sigma_2 - \frac{1}{2} (\sigma_1 + \sigma_3) \right]$$

$$\frac{\varepsilon_3}{t} = \dot{\varepsilon}_3 = \frac{1}{Dt} \left[\sigma_3 - \frac{1}{2} (\sigma_1 + \sigma_2) \right]$$

Scorrimento viscoso nel caso di stato di tensione pluriassiale

Nel caso di stato di tensione monoassiale $\sigma_1 \neq 0, \sigma_2 = \sigma_3 = 0$

$$\dot{\mathcal{E}}_1 = \frac{1}{Dt} \bigg[\sigma_1 - \frac{1}{2} \big(\sigma_2 + \sigma_3 \big) \bigg] \qquad \qquad \dot{\mathcal{E}}_1 = \frac{\sigma_1}{Dt} \qquad \text{ da cui: } \qquad \sigma_1 = \dot{\mathcal{E}}_1 Dt$$

Richiamando il concetto di tensione equivalente si può scrivere, ancora nel caso monoassiale:

$$\sigma_e = \sigma_1$$

e quindi si può scrivere:

$$\sigma_e = \sigma_1 = \dot{\varepsilon}_1 Dt$$

Nel caso in cui la deformazione per scorrimento viscoso sia esprimibile con la relazione:

$$\dot{\varepsilon}_1 = B(\sigma_1)^n = B(\sigma_e)^n$$

La tensione può essere espressa come:

$$\sigma_1 = B(\sigma_1)^n Dt$$

e quindi:

$$\frac{1}{Dt} = B(\sigma_1)^{n-1} = B(\sigma_e)^{n-1}$$

 $\beta = \frac{\sigma_3}{\sigma_1}$

Nel caso triassiale,

reaction triassiale, accettando il criterio di von Mises, la tensione equivalente si scrive:
$$\sigma_e = \frac{\sqrt{2}}{2} \sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2}$$

Scorrimento viscoso nel caso di stato di tensione pluriassiale

Introducendo l'espressione trovata: $\frac{1}{Dt} = B(\sigma_e)^{n-1}$ nelle relazioni costitutive si ha:

$$\begin{split} \dot{\mathcal{E}}_1 &= B(\sigma_e)^{n-1} \bigg[\sigma_1 - \frac{1}{2} \big(\sigma_2 + \sigma_3 \big) \bigg] \\ \dot{\mathcal{E}}_2 &= B(\sigma_e)^{n-1} \bigg[\sigma_2 - \frac{1}{2} \big(\sigma_1 + \sigma_3 \big) \bigg] \\ \dot{\mathcal{E}}_3 &= B(\sigma_e)^{n-1} \bigg[\sigma_3 - \frac{1}{2} \big(\sigma_1 + \sigma_2 \big) \bigg] \end{split}$$
 e ponendo:

e introducendo l'espressione della tensione di von Misess al posto di σ_e si ottiene infine:

$$\varepsilon_{1} = Bt(\sigma_{1})^{n} \left[\alpha^{2} + \beta^{2} - \alpha\beta - \alpha - \beta + 1\right]^{\left(n - \frac{1}{2}\right)} \left[1 - \frac{\alpha}{2} - \frac{\beta}{2}\right]$$

$$\varepsilon_{2} = Bt(\sigma_{1})^{n} \left[\alpha^{2} + \beta^{2} - \alpha\beta - \alpha - \beta + 1\right]^{\left(n - \frac{1}{2}\right)} \left[\alpha - \frac{\beta}{2} - \frac{1}{2}\right]$$

$$\varepsilon_{3} = Bt(\sigma_{1})^{n} \left[\alpha^{2} + \beta^{2} - \alpha\beta - \alpha - \beta + 1\right]^{\left(n - \frac{1}{2}\right)} \left[\beta - \frac{\alpha}{2} - \frac{1}{2}\right]$$

