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1 Introduction

BEGINNING in 1955 with the work of F. Freudenstein
1d his co-workers {1, 2],* there has been an extensive develop-
ent of analytical methods for the synthesis of plane mechanism
hich make efficient use of the capabilities of modern digital
mputers. Major emphasis has been placed on the use of com-
ex polar vector notation to describe relative positions in the
tkage of an assumed type from which analytical expressions for
lative displacements, velocities, or accelerations can be de-
rmined. These equations are then combined with design con-
sons to give a set of simultaneous equations to be solved for
known mechanism parameters.

A second and somewhat different design method is the synthesis
linkages directly from specified finite displacements given in
merical form. Wilson [3] has developed design equations
ich locate center-point and circle-point curves of plane mecha-
ms in terms of the classic rotation matrix operator combined
th the displacement of a point in the moving body initially
ated at the origin of the coordinate svstem. The rotation
trix is somewhat limited in its application since all rotations
it be specified about axes passing through the origin of the
rdinate system.

[he present paper gives an extension of the finite displacement
thod for plane mechanism synthesis using a 3 X 3 displace-
nt matrix operator, which allows a more generalized descrip-
1 of plane displacement than the usual 2 % 2 plane rotation
trix. A future paper will describe the application of the 4 X 4
placement matrix operator to problems in the synthesis of
ee-dimensional linkages.

Geometric Transformations

reometric transformations [4] are a part of the mathematical
ion of function. The simplest type of geometric transforma-
1 is the potnt iransformation, in which every point considered
i element of one space is transformed into a corresponding
at in a second space. A particularly simple group of geometric
wsformations, useful in kinematics, is the affine transformation,
vhich points located on a straight line in one space are trans-
ned into corresponding points on a straight line in & second
ze.
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Synthesis of Plane Linkages With
Use of the Displacement Matrix

A generalized matrix for the description of rigid body displacement in twwo dimensions is
developed.  This displacement matrix is applied o the synihesis of plane linkages used
for rigid body guidance, path generation, and function generation.

An n-dimensional affine space A" is a set of elements (points)
having a one-to-one mapping onto the n-dimensional vector space
Vr. An affine transformation in two-dimensional space is de-
fined analytically when zs, y» are linear functions of z;, y;. Ex-
pressed as a homogeneous matrix equation,

T2 | = | an a2 : 13 Ty (1
Y2 Az O -: 2 h
1 0 0 i1 1

Rigid body displacement without distortion can be considered
as a special case of an affine vransformation.

3 Displacement: Mathematical Description

A particular rigid body displacement, as defined above, can be
considered as one element of the group which consists of the system
D of all rigid body displacements. We let {D] in matrix form
represent an element of the system O and adopt matrix multiplica-
tion as the rule of combination of the group.

From the mathematical definition of a group [5] we may state
the following conditions which must be satisfied by displacement
matrices:

{(a) The product of any two of the system of generalized dis-

placement matrices is also a displacement matrix which forms an
element of the same system in Euclidian space.

(DW][D:] = [D] 2)

(b) The product of any three displacement matrices is asso-
ciative.

([Dx] [D:])ID;] = [D1]<[D2] {Dﬂ i (3)

(¢) There exists an identity matrix (] which is an element of
the system.

(d) For any displacement matrix [Dy] in the system, there
exists an inverse [Dy] 7! in the same system such that

(DD~ = (I} (4)

4 Basic Displacement Matrices

After establishment of the mathematical and geometric basis
for the general two-dimensional displacement matrix, it is im-
portant to examine the analytical form of the displacement matrix
under certain conditions. Displacement matrices will be formu-
lated as combinations of translation and rotation about the origin
of the coordinate system, in order to display the components of




the matrix analytically in a form which will allow the resolution
of a numerical matrix into its components.

franslation in Two Dimensions

Refer to Fig. 1, which indicates a translation displacement of a
slane on & plane where each point in the plane undergoes a dis-
sacement Az, Ay, Under these conditions

Delp =11 01 Az (5
0 14y
0 01
‘here
i}\Zaiiz‘“'JJl; QUZB/Z“.{M

otation in Two Dimensions About the Origin

Fig. 2 illustrates the rotation of a plane containing a point P
sout a fixed origin of the coordinate system. Therotation matrix
wkes the familiar form,

Dulp = (6)

eneral Motion in Two Dimensions

The displacement matrix for general plane motion can be
rmulated in several ways. Assume a rotation pole 4:(zs, ¥o)
ists which forms a center of rotation in the plane. First, form
displacement matrix [D,]; such that the pole 4;(z, o) will
incide with the origin.

Dy =1 0! -z (7N
0 5 — Y
0o 0l 1
Since
Az = 0 — 2y = —zp, Ay =0~y = —ys.

rond, allow the rotation displacement [D.], about the origin

(Dolp = [cos§ —sin 8! 8—} ()
sin 8 cos 4 0 i
0 0 i1
ally, translate the point A, back to its original position.
D]z = [1 0! w] (9)
0 1iw|
------- e
0 011 |
refore,
’E = 13)3’-T£D2‘12101JT
=11 0 cos § =sin §10 I 0i ~x
0 Tiy||sind cosBiollo 1i—yp
0 011 0 0 f1lLo 0! 1
[De}l = cosf —sin 8 Pao(l — cos ) + yosin )] (10)
sin 8 cos 8 yo(l — cos @) — zqsin 8)
0 0 i 1

ig. 3 illustrates two-dimensional motion in which the position

he rotation pole is unknown. First rotate AB; about the

1 through the angle 8 to position 4,°B,”. The line 4,'B,’ is
moved to position 4,B; by direct translation.

Fig. 1 Two-dimensional translation
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Fig. 2 Rotation in two dimensions about the origin
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Fig. 3 General two-dimensional displacemeny:

W] = [(DhplDily
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0 0! 1 0 0 i1
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we-obtain
cos § —sin 81 (2, — x4
sin 6 cos 91 (g — =
0 0




Comparing (10) and (11), we note that the rotation pole
P(z,, yo) may be determined from A:(z, 1), 42(xs, y2), and 8 by
equating corresponding elements of the displacement matrix.

A third form would be expressed in terms of the coordinates of
specific points of the moving plane in the initial and final posi-
tions. Three points, 4, B, and ¢, are specified in positions
Az, g, Bilz’, '), and Ci(z”, yi") and in positions Ax(zs, v2),
Balzy', yo'), and Colxs”, 12”3, The [Di2] matrix may be found by
noting that

= Dz o 2"

vy iyz v o
§
IR (11 1 -
Therefore
Dil = [z w2 oo o] {12)

It is often convenient to form the displacement matrix from
the change in position of two points only in the rigid body. In
this case the coordinates of a third point in the body may be
found (and used as 27, y”) by rotating (z’, ') 90 deg about (z, y).
This leads to a fourth expression similar to equation (12) buf in-
volving two moving points only.

(D] = {12 @ (=yp' + o+ f‘i2ﬂ
T e
1 1 1

2y @ A=y Aoz o) 10
vy’ (@ Ao~ oz (13
P11 1

Any of the forms given in equations {10), (11), (12), and (13}

will result in a 3 X 3 numerical matrix of the form

[Dr_’i = »"iii An i A (14/
The matrix equation
X, = [Dy] {' X (15)
Yﬁ }‘1
1 L1

represents a coordinate transformation in which any point of the
set which comprises the moving plane is transformed from posi-
tion 1into position 2.

3 General Method of Synthesis

The basic problem in the synthesis of plane linkages is to locate
those points of the moving plane which, as the plane assumes
specified positions, assume a series of positions that lie on a circu-
lar are. These particular points, designated cirele points, can be

d 4s hinge points in the moving plane. Two links, each with
, onnected to the moving hinge points (circle points) and
the other end to ground at the center of the corresponding circular
arc {center points), will guide the plane through the specified
positions.

Assume that a plane displacement is characterized in the gen-
eral form of a [D] matrix similar to equation (11).

Let X and Y, be the unknown coordinates of a moving pivot in
position 1. The nth position of the moving pivot is expressed in
terms of the first position as

Lol = WDnl | Xy

Y, Y,

1 1 n=223.... {16}
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If (X, Yo are the coordinates of the corresponding fixed pivo,
the condition of constant link length requires that

(X0 = X0+ (Vo= Yot = (X, — X0 + (¥, — V)2

n=223.... (U7)

Squaring expressions for X, and ¥, found from equation {16) and
collecting terms leads to

Xi[Aun cos i, + Aun sin 81y — Xo cos B, — ¥y sin 81, + X
+ Y

4 YVildu, cos Oy — Apasin By, + Xysin 8, — ¥y cos By, o]
= ApaXo + Aun Yo — Vald g + A no=123.... (18)
where

:113,, = L, Xy COs 913 + 1 50 8m

‘%l)n S P 31 sin 8[,; — I COB 61,;

In equation {18} there are four unknowns, X, ¥y, X, and 7.
For a three-position guidance problem, two equations (18) would
be available. Therefore, any two of the unknowns could be
specified arbitrarily and the equations used to solve for the re-
malining pair of coordinates. A double infinity of possible solu-
tions is theoretically possible.

If a fourth position is specified, one coordinate may be specified
arbitrarily and the set of three equations solved for coordinates
of points on both the center-point (X, Y,) and circle-point
(X, Y1) curves.

Specification of a fifth position results in the possibility of, but
not necessarily assurance of, a unique four-bar guiding linkage.

If it is desired to guide the moving member by use of a slider-
crank mechanism, a straight-line equation is used in place of the
circle equation given in equation {17). The equation of a straight
line passing through three points Pi(Xy, Y1), Po(Xs, ¥s), Pi(X;,
Y3:) may be expressed conveniently in the form,

X, Yo 1L o=0 (19)

:.Ye Y. 1
X Ys oL

The displacement matrices {Di] and [D;] may be used to
express Po( X, Vo) and Py(X;, YVi) in terms of Py(X,, ¥1). This
leads to a single equation with two unknowns X, ¥,. Either of
the unknown coordinates may be assumed arbitrarily and the
second is determined from the equation. An infinite number of
possible slider positions iz theoretically possible in the three-
position guidance problem.

When a fourth position of the moving plane is specified, there
are two straight-line equations which when solved simultaneously
may result in a unique position for the slider in the first position.

The direction of motion of the slider is easily found from the
equation for the slope as given below.

(Y2 — 7))
(X: - X0

1

g = tan—t (200

6 The Three-Position Guidance Problem

Example Problem 1

Three positions of a moving member are specified (as shown in
Fig. 4), for which it would be difficult to design a guiding four-bar
linkage by the use of the pole triangle or equivalent methods.

111 = «"il(zl? ;71> = (L 1)
;”12 = :12\'-13-:, 1!23 = (2; 05\ {9‘2 = 0 de%
;'13 == .43(1)3, ]/3} = (3, 15;‘ 913 = 45 deg

A four-bar linkage will be designed with the fixed pivot for one
crank located at By(Xy, Yo) = Bo(0, 0) and the fixed pivot for the
second crank located at Co( X/, Yo') = Co(5, 0).
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Solution with

Three-position guidance.
arbitrary cheice of two fixed pivots.

Fig. 4 Example Problem 1:

Numerieal solution is by desk ecalewator to six decimal point
accuracy.
Substituting into equation (18) (zy, i) = (L, 1), (zs, 1) =
(2, 0.5), (Xo, Yo) = (0, 0), and 812 = 0, we have
X1+ (=05)(0)] + Yi[(=0.3) — 0] = —1a[l + (—0.5)]
that is,
Xi — 0.5Y; = —0.625000 21)
Similar substitutions for the displacement to position 3 lead to
2.181981X, — 2.060661Y, = —4.503680 (22
Solving (21) and (22) simultaneously we obtain
X,

yi =

0.994078
3.238155

i

= B,(0.994078, 3.238155)
By(0, 0)

i,e., B}_
By =

Similar substitutions for an assumed pivet Co(5, 0) lead to a pair
of equations in X" and V',
C X — 0.5Y = 4.375000 (23;
3.646446X," 4+ 1.474874Y," = 10.496320 (24)
which give the coordinates of the second moving pivet in its first
position:

~1.654550)

il

Cy C1(3.547725,
Co = Co(5, 0)
The completed mechanism is shown in Fig. 4.

Example Problem 2

The conditions of Example Problem 1 are repeated. In this
case, however, the guidance is to be accomplished by a slider-
erank mechanism such that the fixed crank pivot is located at
Cy = C4(5, 0) and the slider is located somewhere on the y-axis
{z = 0)in its first position.

The choice of fixed erank pivot at ¢y = ({5, 0) has already
been shown to result in a moving pivot €, = ((3.547725,
—1.654550) and the same crank €y will be used in this design.
Since for the slider, X; = 0, we need only to determine the value
of Yg.

From equation (11),

(De] =1 0} 1
0 1:—0.5
0 0f 1
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Fig. 5 Example Problems 2: Three-position guidance. Solution with

one arbitrary fixed pivot and initial slider position on y-axis.

and
(Dl o= [ 0707107 —0.707107 3 (25)
0.707107 0.707107 | 0.085786
0 0 oo
we have
X | = (D] 0 = 1 (263
Yo Yl Y, - 0.5
1 1 1
X3 | = (D 0 = | —0.707107Y, + 3 (27)
Y, Y, 0.707107Y, -+ 0 085786
1 1 i
From
=0
L

we have Y| = 2.433100. That is, the slider shouldd be located 50
that in its first position the slider pivot has the coordinates Dy =

D0, 2.453100).  The slope of the slider path is

Vo= ¥ Yy — Yo -
m = tan § = S —0.5

Xo— X X — N.

4 = tan~! {(—0.5) = —26°35'

The completed mechanism is shown in Fig. 5.

1 The Four-Position Guidance Problem

Example Problem 3

A four-position guidance problem has been created, as shown in
Fig. 7, by adding a fourth position to the three-position guidance
problem of Example Problem 1. Here again, the fact that the first
two positions of the member are parallel would cause difficulty in
the use of Burmester theory for the graphical determination of the
center-point and circle-point curves. In this problem, the four
positions of the plane are again specified in terms of the displace-
ment of one point (A) in the plane and the associated angular
rotation of the plane.

Ay = Az, y1:‘ = (LU
Ag = :’1:(;&72, yz) = (2, 0-5) 912 = 0

may 1967 / 208
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Fig. & Example Problem 3: Four-position guidance. Cenier-point
{solid line) and circle-point curves from computer solution. The solution
selected is also shown in Fig, 7.

N

*‘13{!53’, Ya) = 31 1. 4

Ay = ; = 45 deg

Py

D = (2,2) B = 90 deg

‘44 = :‘14{2‘4, g

{Dm] and fD}
Problem 2.

have been #1

Again, letting (X, ¥} be the first position of a moving pivot and
(X, Yo) its associated fixed pivet, we may write three matrix
equations for the displacements of the moving pivot (X, ¥'):

X =D X, =7 x5 +17]
Ys Y, V. - 0.5
1] 1] L 1
X = Dul [ X
Ys Y1
L1 L1
= [0.707107X, — 0.707107Y, + 3 (28)
0.707107X; + 0.7071077, + 0.085786
1
Xe =Dy | Xo | = [ =Y, 4+ 3
Y, Y, X+ 1
1 1 1

To insure constant length of the guiding link we have three circle
equations,

(Xl - Xo)z + (Yl - }’0}2 =
= (X3 — Xo + (V5 — Yo
X = X0+ (Yy — Yop

Xy — Xo* 4+ (Yo — To?
(29)

i
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Fig. 7 Example Probiem 3: A selected four-bar linkage for four-posi-

tion guidance

{Xo, Yo)(Xs, YVaX(X,, Ys) may be specified in terms of Xy, ¥
as equations (28). Equations {29) may then be considered as a
set of three equations in four unknowns. Any one of the four un~
knowns (Xs, Yo, X1, Y1) may be specified arbitrarily and the set
of equations (29) solved for the remaining three.

Although it would be possible to carry out the simultaneous
solution of equations (28) and (29) with use of a desk calculator,
it was considered more practical to use a digital computer for this.
purpose.

Equations (28) and (29) constitute a set of nonlinear, second-
order simultaneous equations. Such equations are solved easily
by existing computer programs. Therefore, a computer program
has been prepared which makes use of $C4 BC SIM4 (R. M.
Baer, December, 1961), a computer program available at the
University of California Computer Center in either FORTRAN IT
or FORTRAN 1V language.

The four-position plane mechanism synthesis program accepts
input data in the form of four positions of a point and three angu-
lar displacements. Coordinates of the center-point and ecircle-
point curves are calculated to six decimal accuracy. A plotting
subroutine for use with the Cal-Comp plotter may be used to ob-
tain a graphical printout of the center-point and cirele-point
curves.

Various combinations of guiding links may then be tested
either graphically or with an additional computer program which
will plot coupler-point curves in a form similar to those shown in
Hrones and Nelson [6]. Desired conditions on size, pivot loca-
tions, transmission angle, and so on, all linkage dimensions,
input-crank angles, and coupler-point path curve coordinates
may be checked from the computer printout. The scan region for
plotting center-point and circle-point curves may be varied o
allow a careful examination of a particular region once a rough
decision on pivot location has been made.

Fig. 6 shows the computer printout of the center-point and
cirele-point curves for the data of Exumple Problem 3. A par-
ticular linkage has been chosen as indicated in Fig. 7.

Example Problem 4

Consider the possibility of a unique slider-crank mechanism
which would guide the plane through the sequence of four posi-
tions as specified in Example Problem 3. Since four positions are
the maximum number of precision positions possible with slider-
crank guidance, a solution may or may not exist. Let D, (X, Y.
n = 1, 2, 3, 4 be the coordinates of the slider corresponding to the
specified positions of the coupler-point 4. The coordinates of D
in positions 2, 3, and 4 may be expressed in terms of the coordi~
“nates in position 1 with use of the displacement matrix.

Transactions of the ASME




The colinearity of points Dy, Dy, Ds, and D is specified by the
two straight-line equations

& T 1 §X1 Yool
Xe Yo 1 =0 R E 13 =0 (30)
X 1o and Xy Ve 1
Expanding the determinants, we have
Y, — Y, _ Yy — 1, . Yy - ¥ (31

N-X X - X Xe- X,

The solution of equations (31) is carried out as part of the com-
puter program for four-position plane mechanism synthesis.
The computer program gave the following results:

Dyo= Di(~1.472791, 1.175738)
Yy — ¥y . ) ,
# = tan™! ~:-—~i~ = tan"Y—0.5) = —-26°35
Ko — Xl

The slope is obvious in this particular problem since the dis-
placement from position 1 to position 2 is a pure translation.

The slider-crank mechanism is shown in Fig. 8. The crank
would provide a satisfactory input to the mechanism since the
crank rotation is progressive through the positions and always in
a counterclockwise direction. .

8 Design of Four-Bar Function Generators

Consider the problem of designing a four-bar linkage such that
the input~output erank motions are proportional to a specified
functional relationship between two variables at a given number
of precision points.

The displacement matrix for the relative motion of the input
crank with respect to the output crank may be developed by
separation of the total relative motion into its components. The
input crank has its fixed center 4, = 44(0, 0) located at the origin.
The fixed center for the output crank is located at By = By(1, 0).
The total relative motion is composed of a rotation -8, of the
nput crank followed by a rotation — ¢, about the output crank
enter. The — ¢, component results in an inversion of the entire
nechanism about the first position of the output crank.

In those cases where both cranks rotate in the same direction,

Dilin = [Dl_g,[Dls,

= {_ cos ¢, sind, i1 — cos ¢,
—sin ¢, cos @, ; sin ¢,
L """ 0o o i) I
cos 8, —sin §, 10
sin 4, cos 8, : 0
o T 0 i1
Dialer = | cos (0, ~ @) —sin (0, — ¢,) | 1 — cos ¢,
sin (8, = ¢,) _cos (.~ ¢,) | sing,
o T 0 P
' (32)

hese equations correspond to equation (1) with @ = (8, — ¢,),
L) = (0, 0), and (2, 1) = (1 — cos ¢,, sin ¢,,).

When it is desired to have # and ¢ with opposite directions of
tation, i.e., in a crossed linkage, ¢, is replaced by — ¢, in equa~
2), with the result

dalop = [cos (0, 4+ ,) —sin (4, + ¢,) Pl — cos @,
sin (0, + ¢,)  cos (8, + ¢,) | —sin ¢,
0 0 YT

urnal of Engineering for Industry
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Fig. 8 Example Problem 4:
mechanism

Four-position guidance by slider-crank

Fig, 9 Example Problem 5: Relative center-point (solid line) and
circle-point curves for four-bar linkage to generate y = #%, 0 <x< 1.2
and the selected linkage with A;(0.316397, 0.553513) and B:(0.422429,
0.233854)

Example Problem 5
Design of a four-bar function generator with four precision
positions and velocity ratio specified in the first of the four

positions.
The design will be arbitrarily assumed o be of the crossed-

linkage type.

Funetion: y = ¢

Range: 0 <2< 12

Input angle: 0 < 8 < —90 deg (clockwise)

Output angle: 0 < ¢ < +90 deg

Precision points: z = 0,04, 0.8, 1.2

Velocity ratio: VR = —1latz = 0 corresponding to velocity

pole at (0.5, 0) when linkage is in
first position.

‘The results of the computer calculations are plotted in Fig. 9 in
the form of the loci of the possible moving pivot A and the asso-

21
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ciated moving pivot Bi, both shown in the first position. The
velocity ratio (VE = — 1) condition is imposed by testing possible
couplers 4,8, until one is located where the line A5, passes
through the line of centers at point (0.5, 0).

The velocity ratio condition could be added to the computer
program by writing the equation of the straight line 4,B, which
must also include the velocity pole. Note that in the computer
program point By would be considered a fixed pivot with coordi-
nates Xy, V.

X, N 1 = 0 where A4, = A,(X, Y
Xp Y 1 Bi = Bi(Xs, Yo)
X, Y, 1 and P = P(X, Y, = P05, 0)

In a similar manner, additional velocity ratio conditions may
be imposed if at the same time the number of precision positions
is reduced.

8 Design of Four-Bar Path Generators

The design of a four-bar mechanism for the guidance of a point
Pi(ay, by) through a series of points P, (a,, b,) on a given path is
accomplished by the iterative solution of a set of simultaneous
nonlinear equations involving the unknown parameters Pos o
P 1, 7o, 8o, 7, 81, and 1, a8 shown in Fig. 10. Since the rotation
angle 8y, is listed as an unknown, a new variable will be added for
each additional precision point P, specified along the path. This
results in the advantage of either increasing the number of speci-
fied path precision points or, alternatively, making possible
greater freedom in the arbitrary specification of design parame-
ters. By comparison, in the design of rigid body guidance
mechanisms, the coupler rotation angles 6, are specified as design
conditions.

For each position n there are two design equations based upon
the constraints imposed by constant length for both links L. and
L4.

(Lo = (o= 20) + (ga = @)* = (21— o) + (s — @)*
) (34)
(L) = {r, — 1)t + (5, — 85)% = (r; — 7o)t + (5, — 50)?
Since

Dn = {Dl—"} P ana [ "n —i = gl)ln} 7

n G Sn j 31

1 1 1 1|
where [Dy,] is the form of equation (11} with 2, = a;, 22 = a,,

Y1 = by, and y2 = by, it can be shown that equations (34) lead
o & pair of design equations suitable for computer programing of
the form,

T e
1o -+ Qigo — o — bago — aip — gy + 5

:

+ cos Bl —popr — qon -+ apo + bige
— Aldn blbn ’%’ dn D1 + 51191]
+ sin i (peqr — qQopr = DiPe + Mo
+ anb1 — aibn "%‘ bnpl - (ln(Il} =0
{Plus a similar expression from the second of equations (34)](35)
Table 1 summarizes the relationships between number of path
precision points, unknown variables, and typical examples of
specified variables. It should be noted that, where desired, other
combinations may be specified. For example, assume it is desired

to use two guiding links of given length L, and L, in the mecha-
nism; the problem is to locate their fixed and moving pivots in
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Fig, 10 Four-bar path generator

Tabie 1 Parametric relationships—four-bar path generator
No, of Yo, of Ho. of o, of Selected
Precision  Design Unknown  Specified Examples:
Points, n Equations Variables Variables Synthesis *
2 2 2 7 Specify: D8Py T s By, 8
Caleulate: ro,s0 + 4 ©70712
RS
3 “ 10 6 Specify: Py GgsPy 58y 5 T0s5g
Caleulate: rl’sl’elz’éiﬁ
b 6 n 5 Specify: PGy, 8,7,
: 02 %P1
Caleulate: 50”11”1'812,813,91&
5 8 1z 3 Specify: Pr9g150150
Caleulate: pl’ql’rl’sl’ale,els,elfé’eli
{ See Exemple Problem 6]
+
& 10 13 3 Specify: Ps G s T,
Calealate: 304 Brdes
77 12 1k 2 Specify:  p.,r
Caleulate: agl gthers
8" b 15 1 Specify: p
Caleulate: a?l others
5" 15 16 Q Possible unique solution

*, o
Symbols represent coordinaies as shown in Figure 10,

j:%o.mtiom; highly dependent upon initial guesses and numerical accuracy.

the first position. This specification would add the two following
equations to equations (35).

(La)? {pr — po)* + (@ — qu)?

(La)? =

(36
(ry = )% 4+ (81 — so)®
In the case of five-precision point path generation, there would

be 10 equations and 12 unknowns, and two parameters may be
specified, e.g., po, G-

Example Problem 6
Design of a path generation mechanism with five path pre-

eision points.
Fig. 11 illustrates a four-bar mechanism for the guidance of a
point P through precision points.

{1.00000, 1.00000)
(2.00000, 0.50000)

Pilay b} =
Palas, by) =
(3.00000, 1.50000)
{2.00000, 2.00000)
{1.50000, 1.90000)

Pylas, by) =
P4(a4, b4> =

Pf,(:{ls, bs) =

In this example, fixed pivots were initially assumed at.
= {2.10000, 0.60000)
(1.50000, 4.20000)

Au(po, Qr)>
BO(.TQx SQ) ==
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The computer solution gave
(0.6073749,
(~0.5863996, 0.9969990)

i

Ailpy, ) —1.127103)

Bi(r, 8) =

The computer program will also determine the loci of possible
moving pivots 4, and B for arbitrary finite changes in the loca-
tion of either fixed pivot. These loci are shown in Fig. 11 for 13
positions of By(ry, 89) spaced uniformly on a straight line between
Ba(1.50000, 4.20000) and By( — 1.50000, 3.00000).

Example Problem 7

Design of a path generation mechanism with the same five path
precision points of Example Problem 6 but with fixed pivot speci-
fied only at

Aolpo, qo) = {2.10000, 0.50000)
Two cranks of arbitrary length are specified as L, = 1.0 unit and
Ly = 2.0 units. The computer solution gave

Bolrg, 50} = (0.6934239, 1.184073)

Ailpy, ) = (1.206753, 0.05043468)

Bi(ri, 81) = (0.3341094, —0.7833851)

The computer program will also determine the loci of possible
moving pivots A, and B; and of one fixed pivot By for arbitrary
finite changes in the location of the assumed fixed pivot As.
These loci are shown in Fig. 12 for seven positions of Ao(po, g0)
spaced uniformly on a vertical straight line between A0(2.10000,
0.50000) and 4,(2.10000, 1.10000).

10 Design of Geared Five-Bar Function Generators

Sandor [2] has discussed the use of geared five-bar linkages as
function generators and has shown the possibility of & six-pre-
cision-point solution with specified gear ratio obtained by the
complex-number method.

With use of the displacement matrix methods of the present
paper, it is possible to develop a seven-precision-point solution for
an arbitrarily assumed gear ratio B. A maximum of eight pre-
cision points is theoretically possible if R is considered as a
variable in the equations. The practical realization of such a
solution may be difficult when gears with finite number of teeth
are used. Use of crossed belts or friction wheels would be a
possibility.

The design equation is developed by considering the motion of
link 4 relative to link 2, as shown in Fig. 13. The displacement
matrix for link 4 is formed by considering stuccessive rotations
about points By, B, and d4,; this procedure leads to equation
{37). The input angle is 8., and the output angle is ¢y,.

A

;/ b P3

Ly

Fig. 11  Example Problem 6: Four-bar linkage for path generation with
five precision points and arbitrary choice of both fixed pivots. One
fixed pivot varied to display loci of two moving pivots.

i 2R (7}
N )
7
I
H
? P
H 4
2 { PS [P S
4 -
Py
s
Z
i
s
e E

e e
;//La ‘}1,‘?*

e —

i
Fig. 12 Example Problem 7: Four-bar linkage for path generation with
five precision points. Arbifrary specification of one fixed pivot and
lengths of both guiding cranks. One fixed pivot varied to display loci of
two moving pivots and second fixed pivot.

;Dinj~é.’2 = COs ﬁln — 31 51" E
sin B, 08 Bin | 7ilsin @i, — sin Bra) + s1(cos s — 08 Bia) + sin ¢y,
0 0 1
where
dip = {81n - Qsln} N
(37)

1811'1 = Cgln - @m + Rgln)

From the condition L; = constant there will be (n — 1) design
xquations which may be expressed in a form suitable for pro-
raming as,

Hy= )4 (o — Q)
= [Ciaty — Dy, + r(d — Ci) — su(Bin — D) + B — pl}z

%“ EDm‘-’«M + Clrzyl + fligln - Dln) + Sl(A'liu - ]ln> T Fln - !’11;2

ournal ef Engineering for Industry

L, Aqlr,0)
IS R e, o RO X
| <08, Lo % 27 X
: \
Al pg,an)
! Ls
T
i B,(r,s)

Fig. 13 Example Problem B: Geared five-bar Function generator with
seven precision points. Gear ratio arbitrarily specified as -~0.50.
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where
A = cos o,
Bix = sin o,
Cin = cos B,
Dy = sin 8,
Bin = 1 — cos dia
Fin = sin gy, (38)

Table 2 gives an analysis of the parametric relationships for
geared five-bar function generators and indicates the possiblity of
a maximum of eight precision points for the geared five-bar link-
age. A seven-point solution is presented as an example.

Example Problem 8

Design of a geared five-bar function generator with seven pre-
cision points with arbitrary gear ratio B = 0.5.

Input and output angles were assumed according to the follow-
ing schedule.

fhe = 10.0 deg b1z = 20.0 deg
Bis = 18.0 deg P = 34.5 deg
By = 20.0 deg P = 38.0 deg
fis = 30.0 deg b5 = 55.0 deg
fis = 33.0 deg ¢ = 60.0 deg
Bz = 36.0 deg ¢ = 65.0 deg

The parameters of the resulting mechanism, found by the com-
puter program, are

P = 1.042552

7 = —0.1362623

u; = 0.3900000

v = ~—0.2806455

r1 = 0.4497287

8y = —0.3728327 with base link Ly = unity

The solution is shown in Fig. 13 with B = 0.5, It should be
noted that there are no restrictions on the choice of gear ratio B
except as dictated by the practical choice of number of teeth on
mating gears. A number of gear ratios could be investigated
simultaneously by plotting loci of moving pivot locations as a
function of assumed gear ratio.

Using the methods of the present paper, the authors have also
obtained solutions for path generation mechanisms of the two-
gear five-bar and the four-gear six-bar types. In these cases
also, solutions may be obtained for an arbitrary choice of gear
ratio with corresponding reduction in number of path precision
points,

11 Gonclusion

The numerical methods based upon the displacement matrix
have proved to be useful in the synthesis of any type of plane
mechanism constrained by lower pairs. The method is suitable
for desk calculator computation with up fo three precision points
and makes efficient use of digital computers for larger numbers of
precision points.

24 / may 1967

Table 2 Parametric relationships——geared five-bar function generator

Yo, of Fe, of o, of Fo. of Selected
Precision  Design Unknown Specifiad Examples:
Points, n Equations Variables Variatles Synthesis *

2 1 7 & Specify: R,r,, 8,1, ,7,,D
Caleulate; g ¥ VTR
3 2 T g Specify: R,r.,8,, SV
Calculate: pl,%ll L iats
i 3 7 EY Specify: R,rl,sl,ul
Calculate: V1P,
5 L 7 3 Specify: R,Z“J},s&
Caleulate: n
TSR S
& 5 7 2 %
sl,?ilff,_,pl, 9
7 6 7 1 Specify: R
Caleulate: T4, Sl’ul’ vl,pl, £
{ See Exemple Problem 8]
2 T T [} Possible unique solution for e

caleulated value of R

*
Symbols represent coordinates as shown in Flgure 13,

Tables 1 and 2 indicate the possibility of an increase in number
of precision points in certain design situations as compared with
existing complex number methods. As noted, in some cases the
solutions obtained are highly dependent upon the initial guesses
in the numerical iteration scheme. Work is continuing on ap-
proximate methods of solution leading to an improved set of
initial values such that final convergence to an accurate solution
can be assured in problems involving larger numbers of unspecified
parameters.

Computer programs written in FORTRAN IV language for
the synthesis of rigid body guidance, function generation and
path generation mechanisms are available from the authors upon

request.
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