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Abstract numerical examples to demonstrate the principle. 

The principle of inertia match has been extended from 
one-degree-of-freedom(D.0.F.) system to multi-D.O.F. 
systems. Based on the concept of maximum acceleration 
capacity, a methodology for the determination of gear 
ratios in geared robotic mechanisms has been developed. It 
is found that, at the optimum design, the mass inertia 
matrix of the input links reflected at the joint-space is 
equal to that of the major links, and the maximum 
acceleration capacity is independent of the gear train 
arrangement. Several two-D.O.F. geared robotic 
mechanisms have been used as design examples to 
illustrated the principle. Using this methodology, 
mechanisms can be designed to yield optimum dynamic 
performanCe. 

I. Introduction 

Various performance measures such as the velocity 
ellipsoid and the generalized velocity ratio [ 1,6], the 
condition number [7], and the dynamic manipulability 
index [ 101 have been proposed for the evaluation of 
manipulators. Since these performance measures are based 
on the transformation between the "joint-space" and the 
"end-effector-space", they are useful for the evaluation 
and/or design of direct-drive manipulators. However, they 
are not very helpful for the evaluation and design of 
manipulators using gear trains or other means for power 
transmission. For geared robotic mechanisms, the 
transformation between the "joint-space" and the "actuator- 
space" must also be considered. Taking this into 
consideration, Chen and Tsai [4] defined the generalized 
velocity ratio and acceleration capacity for the design and 
performance evaluation of geared robotic mechanisms. 

For one-D.O.F. geared mechanisms, the principle of 
inertia match [8] can be used as a guideline for the 
selection of gear ratios. As for mulli-D.O.F. mechanisms, 
an approach based on kinematic isotropy followed by 
acceleration capacity optimization was proposed and the 
concept of two-stage gear-reduction was introduced for the 
determination of gear ratios by Chen and Tsai [4]. In this 
paper, a new approach based on the optimization of 
acceleration capacity alone will be presented. Design 
equations and optimality conditions will be derived. 
Several two-D.O.F. robotic mechanisms will be used as 

11. Kinematic Equations 

In this section, some kinematic equations for geared 
robotic mechanisms will be briefly reviewed. Figure 1 
shows a geared robotic mechanism in conceptual form, 
where the inputs to the mechanism are the actuators and 
the output is the end-effector. Let a, 63, and X be the 
displacement vectors associated with the actuators, joipts, 
and the end-effector. Then, the joint velocity vector, 8, 
and the output velocity vector, X, are related by the 
Jacobian matrix, J, as 

( 1) X = J Q  

Fig. 1: Conceptual diagram of a geared robotic mechanism 

And the actuator,velocity vector, b, is related to the joint 
velocity vector, 8, by 

where ( )T denotes the transpose of ( ). We note that A is 
the structure matrix whose elements are functions of gear 
ratios and each column of A represents a transmission line 
in a mechanism [3]. 

Similarly, the joint torque, 7, is related to the external 
force vector F by 

T = J  F 
The joint torque, z, is related to the actuator torque, k ,  by 

z = A (  

&= A T 0  (2) 

(3)  

(4) 

T 

111. Dynamic Equations 

A. Principle of Inertia Match 

The equation of motion is 
Figure 2a shows a one-D.O.F. geared mechanism. 
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. .  
where I, = Ii g2 denotes the inema of the input link 
reflected at the output shaft, Ii the inertia of the input link, 
IL the inertia of the output link, 5; the input torque, q the 
angular displacement of the output shaft, and g = Nfl1  
the gear ratio. 

Fig. 2(a): A one-D.O.F. geared mechanism. 

Assume that I; and IL remain constant regardless of the 
change in gear ratio and assume that there is no power loss 
in the gear mesh. Fig. 2b shows the relation between the 
output shaft acceleration, q, and the gear ratio, g. It is 
clear that, given ti, Ii and IL, there exists an optimum gear 
ratio which yields a maximum output acceleration. At the 
optimum design, the output acceleration and the gear ratio 
are given by 

e 
si 

qlmax = 2 Jq- 

Fig. 2(b): Output acceleration vs. gear ratio. 

It can be said that the gear ratio is chosen such that the 
reflected input inertia is "matched' with the output inertia. 
This is known as "principle of inertia match" [SI. 

B. Acceleration Capacity 
The equations of motion for an n-D.O.F. geared 

robotic mechanism can be written in the joint-space as [5] 

M ~ + ~ ~ C G + G = A ~  ( 8) 
* T  

where M is an n by n symmetric inertia matrix, 0 C 6 is 
the generalized inertia force contributed by the Coriolis and 
centrifugal effects, and G is the generalized active force 
contributed by gravitational effect and extemal loads. 

In what follows, we shall neglect the Coriolis and 
ccnlripetal forces, and we shall also assume that there are 

no gravitational forces and extemal loads. Under this 
assumption, eq. (8) reduces to 

Differentiating eq. (1) with respect to time and neglecting 
the Coriolis and centrifugal effects, we obtain 

Eliminating 8 from eqs. (9) and (lo), yields 

Equation (1 1) provides a torque transformation from the 
end-effector-space to the actuator-space. Note that both 
matrices A and M are functions of gear ratios. 

M G = A ~  (9) 

j i=Ji i ,  (10 1 

A - ~ M J - ~  j z . = k  (11) 

The question we want to answer is 
2 T  

Given 151 €, W s € , = l ,  (12) 

what gear ratios yield the optimum dynamic performance? 
In eq. (12), Wc is a diagonal, positive definite, weighting 
matrix. 

obtain 
Substituting eq. (11) and its transpose into (12), we 

Equation (13) represents an acceleration ellipsoid in the 
end-effector space. As an extension of the principle of 
inertia match, Chen and Tsai [4] defined the acceleration 
capacity (A.C.) to be proportional to the volume of the 
acceleration ellipsoid. They showed that 

[ det( JT W, J )det( A We AT )11'2 
A.C. = (14) 

det(M) 
where Wx and W$ are diagonal, positive definite, 
weighting matrices. 

The problem we want to solve now becomes: 

Given I €,I = 1,  
2 

what gear ratios yield the optimum acceleration capacity? 
To answer this question, we will first examine the inertia 
matrix M, and then seek for the optimum solution. 

IV. The Inertia Matrix M 

It has been shown that there exists an "equivalent 
open-loop chain" in a geared robotic mechanism [9]. Each 
link in the equivalent open-loop chain is referred to as a 
major link while all the other links are called the carried 
links [5]. As shown in Fig. 3, links 1 , 2  and 3 are the 
major links, and links 4 and 5 are the carried links. 

In order to facilitate the dynamic analysis, Chen [5] 
suggested the following approach. First, all the carried 
links are treated as being rigidly attached to their carriers 
and the generalized inertia forces due to the resultant 
equivalent open-loop linkage are formulated. Second, the 
effects of relative rotations of the carried links with respect 
to their carriers are formulated and added to the generalized 
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inertia forces. Let M, and M, be the inertia matrices due 
to the fist and second part of the aforementioned 
generalized inertia forces, respectively. Then, the inertia 
matrix M can be written as 

M = M , + M ,  (15) 
where both Mm and M, are positive definite symmetric 
matrices. 

rotation with respect to its carrier j can be written as[5] 
The kinetic energy of carried link i due to relative 

where Kij denotes the kinetic energy of link i due to its 
rotation with respect to link j, vi a unit vector along the 
"positive" axis of rotation of link i, Ii the Foment of 
inertia of link i about its axis of rotation, 0i,j rotational 
speed of link i with respect to link j, and Wj angular 
velocity vector of carrier j with respect to the inertia frame. 

The angular velocity of a major link j, in an open- 
loop chain, can be written as 

j -1 

s =1 
w j =  c ( Z S i l S )  (17 1 

where Z, denotes a unit vector along the s-th joint axis in 
the equivalent open-loop chain, and is the rate of change of 
the joint angle qs. We note that the unit vectors Z,, s = 1, 
2,-*, j-1, are functions of the joint angles. 

With the fundamentalcircuit equations and the 
appropriate coaxiality conditions [9], the rotational speed 
of carried link i with respect to its carrier j can be written 
as a linear summation of the joint rates as shown below: 

n 

where his, s = j, j+l;**, n, are functions of gear ratios. 
Furthermore, b;, are the elements of the r-th column in the 
structure matrix A defined in [3] if link i is the inpu,t link 
on r-th transmission line, and a colfection of these 8;j'S 
forms the actuator velocity vector a. 

Substituting eqs. (17) and (18) into (16), we obtain 
n j -1 2 "  

s = j  s =  j s =1 
Ki, j=Iiu c /2+ c COis$) c GS4J.Vi) (19) 

Applying Lagrangian equation on eq. (1 9) and 
neglecting the Coriolis and centrifugal terms, we obtain 

F;,=Iibir[C(bis$ )+e   vi], for r 2J (20a) 
n j -1 

s= j s =1 
" 

Fi: = I i  [ E  (b i s~XZ, .v i ) I ,  for r < j (20b) 

where FZ denotes the generalized inertia force due to the 
relative motion of a carried link i with respect to its carrier 
j, and associated with %. Note that the order-of-magnitude 
for ( Z, Vi ) ranges from - 1 to + 1, while the his's are 
usually one order-of-magnitude larger than ( Z,*vi ). 
Hence, in general, the first term in eq. (20a) dominates the 

s = j  

equation and eq. (20) can be approximated as: 
I n 

0, f o r r < j  
Hence, the contribution of input links to the inertia matrix 
M, can be obtained by assembling the coefficients of in 
eq. (21), for all combination of i and r, as 

where 

(23 1 1 In 
I , = ( r I  I i )  

i =1 
and Ii is the inertia of i-th input link, U is a diagonal 
scaling matrix with its (i, i) element equal to I; /Im and its 
determinant equal to unity. Note that the contribution to 
the inertia matrix Mr due to other carried links have been 
neglected, since they are usually one order-of-magnitude 
smaller than that due to the input links. It should also be 
noted that Mr is a function of gear ratios while Mm is a 
function of the joint angles and the link mass properties. 
Hence, we can optimize the design of a manipulator only 
at a predetermined manipulator posture. 

V. Acceleration Capacity Optimization 

Taking the determinant of eq. (22), yields 
det( MI)=  det( I, A U AT)= I: det (A A' ) (24) 

From eq. (24), eq. (14) can be further reduced to 

A.C.= a h  
where 

det(JTWx J ) d e t ( 3 )  
a = (  n Ill2 (26 1 

Im 

det (M 
h =  . .  

det(M) 
Note that to maximize acceleration capacity is equivalent 
to maximize h, since a is a constant at a given posture. 

A. Two-D.O.F. Systems: 
Assume that the structure matrix A takes the 

following general form: 

Then, from eq. (221, inertia matrix M, can be written as 

where 
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2 =  I1 gll g21+ I281 2g22 
2 

K 3 =  I, gzl + I2 g i 2  
Note that the matrix Mr contains only three independent 
parameters, although the number of non-zero elements in 
the structure matrix can be as many as four. Also note 
that the structure matrix must have at least three non-zero 
elements in order for Mr to be non-singular and to have 
non-zero k2. 

Similarly, the inertia matrix M, can also be 
expressed in terms of three independent parameters as 
shown below: 

(33) 

Hence, from eq. (1 5),  the inertia matrix M is given by 

Substituting the determinants of &. (29) and (34) into eq. 
(27), we obtain 

. .  

(m, + Kl)(m3 + K3> - <mz + K2I2 

Taking the derivative of h with respect to ki for i = 1,2 
and 3, and equating them to zero, we obtain 

2 2 
(m3+K3)[K3(ml-K1)+2 K2 1- K3 (m2+K2) = 0 ( 3 b )  
(m2+r> N2 (m2-Q + 2 K~ K ~ I - K ~  <ml+ K, 1 (m3+KJ = 0 

(36b) 
2 2 

(ml+Kl)[Kl($-K3)+ 2K2 1 -5 (m2+5>  = 0 ( 3 k )  
Two non-trivial solutions to eqs. (36a)-(36c) are: 

K = - m  

K = -m 
1 

~ = m  

2 (37) [::i and { K 3 = - m  3 
Since the inertias must be non-negative real numbers, only 
the former set is a feasible solution. In other word, for 
two-D.O.F. systems, the optimality condition for 
maximum acceleration capacity is 

M, I i j  = M, 1. 1 .J . (38 1 
provided M, and M, have the same number of independent 
parameters. Substituting eq. (38) into eq. (15) and the 
resulting equation into eq. (27), we obtain 

1 

2' det ( )112 
h)opt = 

From eqs. (25) and (39), we note that, given J, I1 and 12, 
the maximum acceleration capacity of a manipulator at a 
prescribed posture is independent of the gearing 
configuration, i.e. the arrangement of transmission lines. 

B. N-D.O.F. Systems: 
In the appendix, we have proved that 

and 

is a sufficient condition for the equality sign to hold. This 
leads to the following theorem. 
Theorem: For n-D.O.F. geared robotic systems, the 
acceleration capacity is bounded by the following 
inequality: 

M , ) i , j =  M,). 1.J (41 1 

det(JTWx J)det(M$) 112 

1 (42) 1 A . C . 5  y (  
2 1, det(Mm) 

A suficient condition for the sign of equality to hold is 

Equation (43) requires the forms of M, and M,,, to be 
compatible. When the equality sign holds, the optimum 
value of acceleration capacity at a given posture is 
independent of the gearing conjiguration. 

Equation (43) implies that, at the optimum design, 
the mass inertia matrix of the input links reflected at the 
joint-space is equal to that of the major links. We shall 
call the above theorem the generalized principle of inertia 
match for multi-D.O.F. geared robotic systems. 

M , = M m  (43) 

VI. Design Examples 

For the two-D.O.F. planar manipulators as shown in 
Figs. 3-4, assume that, at a given posture, the inertia 
matrix Mm takes the form of eq. (34) and the product of 
Jacobian matrix is: 

(44 1 J T W x J = [ a  '1 
b c  

The effect of gearing configuration on the optimum gear 
ratios is discussed as follows: 

A. Individual Joint-Drive Manipulator 

[4]. The structure matrix A can be written as 
Figure 3 shows a individual joint-drive manipulator 

r 

(45 1 

Substituting eq. (45) into eqs. (30)-(32) and the resulting 
equations into eq. (29), we obtain 

L 

where 
2 

K, = I & ,  
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2 

(4%) 
K = I  g 

3 2 22  

z1 5(Motor 2) 822 

- 5  - x1 
1 a 4(Motor 1) - 

Fig. 3: A two-D.O.F. individual joint-drive manipulator. 

Since k2 = 0, the forms of M, and Mm are not compatible 
with each other and, therefore, eq. (38) can not be used as a 
valid solution. 

[ (m m - m2) - K ~ K ~ ]  - ( K ~  m3 - ~ ~ m ~ ) =  0 (48a) 

[(m 1 3  m - ~ ~ ) - I C ~ K ~ ] + ( K ~ ~ ~ - K ~ ~ ~ ) = ~  (48b) 
From eqs. (47a-b) and (48a-b), the optimal conditions for 
the individual joint-drive manipulator are 

With k2 4, eqs. (36a) and (36c) reduce to 
2 

1 3  

(49b) 

(49 b) 

2 2 2  m m  - m  = I 1  g g 
1 3 2 1 2  1 1  2 2  

2 
I1 $1 m 3  = I2 g22 ml 

Solving eqs. (49a-b) for g l l  and 822 and substituting the 
results into eq. (43, we have 

A =  

where 
p = m  m - m 2  

1 1 3  2 

Assuming Wq is an identity matrix, then from eq. (25), 
the maximum A.C. can be written as 

. 2.112 

B. Gear-Coupled Manipulator 

three non-zero elements in its structure matrix as shown 
below: 

Figure 4 shows a gear-coupled manipulator having 

(53 1 

where 822 = 812 n12 1122. Substituting eq. (53) into eq. 
(39) and solving the resulting equations we obtain 

and from eqs. (25), (26) and (39), we obtain 

(55) 

motor 1 h motor2 - - 
Fig. 4: A two-D.O.F. planar gear-coupled manipulator. 

Note that a sign change along any column of the structure 
matrices as shown in eqs. (50) and (54) does not change 
the optimum acceleration capacity[41. 

VII. Numerical Evaluation 

For the two-D.O.F. planar manipulators as shown in 
Figs. 3-4, it can be shown that the Jacobian matrix is 
given by 

] (56) 
J = [  -d3S12-d2S1  - d3S12 

d 3 C 1 2 + d 2 C 1  d3C12 

where d2 = 22.86 cm, d3 = 17.78 cm are the lengths of 
link 2 and link 3, respectively, and where Si, Ci, S12, and 
Cl2 denote sin(@;), cos(@;), sin(@1+@2), and cos(81+@2), 
respectively. With the end-effector positioned at [Xi, Y11 
= [22.86,0] as the design reference point, we have (See 141 
for detailed derivation) 

Assuming Wx and Wq are both identity matrices, we have 

(59 1 

Let I1 and I2 be 0.088 kg-cm2 and 0.1 kg-cm2, 
respectively. Then, the optimal gear ratios can be solved 
for the above two examples. The resulting structure 
matrices and their maximum acceleration capacities are 
given in Table 1. It is clear that for the cases in which the 
forms of M, and Mm are compatible, the acceleration 
capacity can always reach a maximum value and is 
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independent of the gearing configuration. 

1 [ 1M1171 
L 0 -326417J 1 

A.C. Shucture Matrix (A) examples 

3.12344 

Table 1: Structures matrices and acceleration capacities 

VIII. Summary 

We have extended the principle of inertia match from 
one-D.O.F. system to multi-D.O.F. systems. A 
methodology for the determination of optimal gear ratios 
for geared robotic mechanisms has been developed. The 
methodology is based on the optimization of acceleration 
capacity at a given posture. We have shown that 
individual joint-drive manipulators can be designed to 
achieve an optimum acceleration capacity, although it can 
not be designed to process a kinematically isotropic 
property[4]. We have also shown that geared-coupled 
manipulators can be designed to yield a maximum 
acceleration capacity, provided the forms of Mr and Mm are 
compatible with each other. At the optimum design, the 
mass inertia matrix of input links reflected at the joint- 
space is equal to that of the major links and the maximum 
acceleration capacity is independent of the gear train 
arrangement. 
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Appendix 

matrices X and Y of order n, the following inequality holds 

9-11, Vol. 1, pp. 273-278, 1990. 

CA, pp.143-151, 1986. 
C. Gosselin,and J. Angeles, "A New Performance 

It has been shown [2] that for positive definite 

det(X+Y) 2 det(X)l/"+det(Y)'/" 
I /n  

('41) 
Squaring both sides of eq. (Al), we obtain 

det(X+Y)n 2det(X)"+det(Y)"+2[det(Xc)detCy)P ( ~ 2 )  
Since it is always true that 

det(X) + det(Y) 2 2 det(X)det(Y) ( ~ 3 )  
It follows, from eqs. (A2) and (A3), that 

Taking n/2 power to both sides of eq. (A4), we obtain 

Dividing eq. (A5) by [det(X+Y) det (Y)]lD, yields 

1 - 2 - 2 - 2 - 

2 /n 2 /n 2 /n 

2 /n 
det(X + Y)2/n222det(X)det(Y) (A41 

det(X+ Y ) 2  2" [det(X)det(Y)l1I2 (As> 
. I -  

[det(X)f'' 1 
I 

det(X +y> 2" [det(Y)]'/2 
Replacing X and Y by Mr and Mm in eq. (A6), 
respectively, and using eq. (15), we obtain 

For Mr = Mm, we have 

('48) 
det(Mr + M,)= det(2Mr) = 2" det(Mr) 

Thus, it can be concluded that M, = Mm is a sufficient 
condition for the equality sign in eq. (A7) to hold. 
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