Chapter 1
Two-Body Orbital Mechanics

1.1 - Birth of Astrodynamics: Kepler’s Laws

Since the time of Aristotle the motion of planets was thought as a combination of smaller circles moving on larger ones. The official birth of modern Astrodynamics was in 1609, when the German mathematician Johannes Kepler published his first two laws of planetary motion. The third followed in 1619.

First Law – The orbit of each planet is an ellipse with the Sun at a focus.

Second Law – The line joining the planet to the Sun sweeps out equal areas in equal times.

Third Law – The square of the period of a planet is proportional to the cube of its mean distance from the Sun.

Kepler derived a geometrical and mathematical description of the planets’ motion from the accurate observations of his professor, the Danish astronomer Tycho Brahe. Kepler first described the orbit of a planet as an ellipse; the Sun is at one focus and there is no object at the other. In the second law he foresees the conservation of angular momentum: since the distance of a planet from the Sun varies and the area being swept remains constant, a planet has variable velocity, that is, the planet moves faster when it falls towards the Sun and is accelerated by the solar gravity, whereas it will be decelerated on the way back out. The semi-major axis of the ellipse can be regarded as the average distance between the planet and the Sun, even though it is not the time average, as more time is spent near the apocenter than near pericenter. Not only the length of the orbit increases with distance, also the orbital speed decreases, so that the increase of the sidereal period is more than proportional.



Kepler's first law needs to be extended to objects moving at greater than escape velocity (e.g., some comets); they have an open parabolic or hyperbolic orbit rather than a closed elliptical one. Thus, all of the conic sections are possible orbits. The second law is also valid for open orbits (since angular momentum is still conserved), but the third law is inapplicable because the motion is not periodic. Kepler's third law needs to be modified when the mass of the orbiting body is not negligible compared to the mass of the central body. However, the correction is fairly small in the case of the planets orbiting the Sun. A more serious limitation of Kepler's laws is that they assume a two-body system. For instance, the Sun-Earth-Moon system is far more complex, and for calculations of the Moon's orbit, Kepler's laws are far less accurate than the empirical method invented by Ptolemy hundreds of years before.








Fig. 1.1 Kepler’s first and second law


Kepler was able to provide only a description of the planetary motion, but paved the way to Newton, who first gave the correct explanation fifty years later.
1.2 - Newton’s Laws of Motion

In Book I of his Principia (1687) Newton introduces the three laws of motion
First Law – Every object continues in its state of rest or of uniform motion in a straight line unless it is compelled to change that state by forces impressed upon it.

Second Law – The rate of change of momentum is proportional to the force impressed and is in the same direction as that force.

Third Law – To every action there is always opposed an equal reaction.
The first law permits to identify an inertial system. The second law can be expressed mathematically as
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where 
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 is the resultant of the forces acting on the constant mass m and 
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 is the acceleration of the mass measured in an inertial reference frame. A different equation applies to a variable-mass system. The third law has just permitted to deal with a dynamical problem by using an equilibrium equation. Its scope is however wider: for instance, the presence of the action 
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 on another portion of an ampler system.
1.3 - Newton’s Law of Universal Gravitation

In the same book Newton enunciated the law of Universal Gravitation by stating that two bodies attract one another along the line joining them with a force proportional to the product of their masses and inversely proportional to the square of the distance between them, that is,
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where the Universal Gravitational Constant 
[image: image8.wmf]-2

-1

3

11

s

kg

m

10

6742

.

6

-

×

=

G

. The law is easily extended from point masses to bodies with a spherical symmetry.

1.4 - The N-Body Problem
The analysis of a space mission studies the motion of a spacecraft, which is the Nth body in a system that comprises other N-1 celestial bodies. The knowledge of the position of all the N bodies is however necessary, as there is mutual attraction between each pair of bodies: the so called N-Body Problem arises.


An inertial reference frame is required to apply Newton’s second law of dynamics to each jth body, whose position is given by the vector 
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. The problem is described by N second-order non-linear vector differential equations
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where 
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is the sum of the actions on mj of all the other N-1 bodies, which are assumed to have point masses, according to Newton’s law of gravitation. The additional term 
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 takes into account that
· usually the bodies are not spherically symmetric

· the spacecraft may eject mass to obtain thrust

· other forces (atmospheric drag, solar pressure, electromagnetic forces, etc.) act on the spacecraft
and represents the resultant force on mj due to these perturbations.


The interest is often in the motion relative to a specific celestial body, for instance, the 1st. The corresponding equation can be subtracted from all the others, and the relevant equations are in fact N-1.


The spacecraft mass is negligible and cannot perturb the motion of the celestial bodies, which is regularly computed by astronomers and provided to the Astrodynamics community in the form of ephemeris. The remaining vector second-order differential equation, describing the spacecraft motion relative to the first body, is transformed in a system of six scalar first-order differential equations, which is solved numerically. An analytical solution can be only obtained if one assumes the presence of just one celestial body, and neglects all the other actions on the spacecraft but the point-mass gravitational attraction.
1.5. Equation of Motion in the Two-Body Problem

Consider a system composed of two bodies of masses M and m; the bodies are spherically symmetric and no forces other than gravitation are present. Assume an inertial frame; vectors 
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 and 
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 describe the positions of masses M and m, respectively. The position of m relative to M is
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where all the derivatives are taken in a non-rotating frame.


The law of Universal Gravitation is used when the second law of dynamics is separately used to describe the motion of each mass
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By subtracting the second equation from the first (after an obvious simplification concerning masses) one obtains 
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as, in practical systems, M >>m (Earth and Moon with 
[image: image18.wmf]m

M

3

.

81

=

 are the most balanced pair of large bodies in the solar system) 


The Equation of Relative Motion is usually written in the very simple form
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after introducing the gravitational parameter  = GM; typical numerical values are
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It is worthwhile to remark that
· the relative position 
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 is measured in a non-rotating frame which is not rigorously inertial
· the relative motion is practically independent of the mass of the secondary body; a unit mass will be assumed in the following.

1.6 - Potential Energy

The mechanical work done against the force of gravity to move the secondary body from position 1 to position 2
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does not depend on the actual trajectory and one deduces that the gravitational field is conservative. The work can be expressed as the difference between the values at point 1 and 2 of the potential energy, whose dependence on radius has been found, but the value of an arbitrary constant is to be selected
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The constant C is conventionally assumed to be zero in Astrodynamics. The maximum value of the potential energy is zero, when the spacecraft is at infinite distance from the central body.

1.7 - Constants of the Motion

After the equation of motion is written in the form
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its scalar product with 
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 provides, by using Eq. A.5 in Appendix,


[image: image26.wmf]0

2

0

2

2

3

3

=

÷

÷

ø

ö

ç

ç

è

æ

-

Þ

=

+

=

×

+

×

=

×

+

×

r

v

t

r

r

v

v

r

r

r

v

v

r

r

r

r

r

m

m

m

m

d

d

&

&

&

r

r

&

r

r

&

r

r

&

&

r

&

r


During the motion the specific mechanical energy, which is the sum of kinetic and potential energy, is constant
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even though it is continuously transferred from the kinetic to the potential form, and vice versa. This result is the obvious consequence of the conservative nature of the gravitational force, which is the only action on the spacecraft in the two-body problem.


The vector product of 
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 with the equation of motion gives (using Eq. A.2)
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Therefore, the angular momentum
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is a constant vector. Since 
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 is normal to the orbital plane, the spacecraft motion remains in the same plane. This result is not surprising: the unique action is radial, no torque acts on the satellite, and the angular momentum is constant.



Finally, the cross product of the equation of motion with 
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using Eq. A.6 becomes
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The vector
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is another constant of the spacecraft motion in the two-body problem.

1.8 - Trajectory Equation

The dot product 
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provides
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where is the angle between the vectors 
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 and 
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. The radius attains its minimum value for  = 0: the constant vector 
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 is therefore directed from the central body to the periapsis.



A conic is the locus of a point that moves so that the ratio of its absolute distance r from a given point (focus) to its absolute distance d from a given line (directrix) is a positive constant e (eccentricity)
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which is the equation of a conic section, written in polar coordinates with the origin at a focus. By comparison with the trajectory equation, one deduces that

· in the two-body problem the spacecraft moves along a conic section that has the main body in its focus; Kepler’s second law is demonstrated and extended from ellipses to any type of conics

· the semi-latus rectum p of the trajectory is related to the angular momentum of the spacecraft (
[image: image42.wmf]m

2

h

p

=

)
· the eccentricity of the conic section is the magnitude of 
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, which is named eccentricity vector. 

1.9 – The Conic Sections
The name of the curves called conic sections derives from the fact that they can be obtained as the intersections of a plane with a right circular cone. If the plane cuts across a half-cone, the section is an ellipse; one obtains a circle, if the plane is normal to the axis of the cone, and a parabola in the limit case of a plane parallel to a generatrix of the cone. The two branches of a hyperbola are obtained when the plane cuts both the half-cones. Degenerate conic sections (a point, one or two straight lines) arise if the plane passes through the vertex of the cone.
1.9.1 – Ellipse

The canonical equation of the ellipse in Cartesian coordinates is
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where a is supposed to be a positive quantity. The foci are located at 
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The distance of a point of the ellipse from the prime focus (c > 0) is obtained by considering
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and, in a similar way, the distance from the second focus 
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is found. The sum of the last two equations provides
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which proves that an ellipse can be drawn using two pins and a loop of thread. The periapsis and apoapsis radii, corresponding to 
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and can be combined to obtain
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The abscissa of a generic point of the ellipse 
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is used to obtain the polar equation
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The length of the semi-latus rectum is therefore 
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1.9.2 – Hyperbola

The canonical equation of the hyperbola in Cartesian coordinates 
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shows that the curve does not intersect the y-axis. The arbitrary choice 
[image: image58.wmf]0

<

a

 allows obtaining the same polar equation as for the ellipse. The foci are located at 
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By posing
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the equation is rewritten in polar coordinates with the origin in the center of the xy-frame
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Points of the hyperbola exist only if 
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provides the direction 
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The prime focus is the left one and only the left branch of the hyperbola is significant in Astrodynamics, as gravity is an attractive force. The distance of a point of the hyperbola from the prime focus (c < 0) is found by considering
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and, by using the abscissa of a generic point of the hyperbola (
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i.e., the same expressions as for the ellipse, but a < 0 and e > 1. 
1.9.3 – Parabola

The parabola may be derived from the hyperbola in the limit case of unit eccentricity.
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The asymptotes are parallel and their intersection is at the infinite (
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). The semi-latus rectum is however finite and the polar equation of the parabola is
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1.10 - Relating Energy and Semi-major Axis

An energetic constant of motion, the angular momentum, has been proved to be simply related to the semi-latus rectum (
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). The specific energy will now be related to a geometrical parameter of the conics.



The constant values of the angular momentum and total energy can be evaluated at any point of the trajectory; in particular at the periapsis, where the spacecraft velocity is orthogonal to the radius vector
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where
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One obtains
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that is, a very simple relationship between the specific mechanical energy and the semi-major axis.



The last relationship between geometrical and energetic parameters of the conics is obtained by recasting the above equations
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The degenerate conics have zero angular momentum and therefore unit eccentricity.
Appendix – Vector Operations
The results of some vector operations are given in this appendix.

A.1. 
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A.3. 
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A.4. 
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This equality is intuitively proved by considering that either side represents the volume of the parallelepiped whose sides are given by the vectors. In a more rigorous way, the scalar triple product of three vectors
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is a pseudoscalar and would reverse sign under inversion of two rows. Therefore 
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A.5. 
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This result of vector analysis is very important in orbital mechanics and rocket propulsion: assigned a vector variation 
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 increases the vector magnitude, whereas the perpendicular component just rotates 
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, keeping its magnitude constant.
A.6. 
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Chapter 2

Two-Dimensional Analysis of Motion
2.1 - Reference Frames
The angular momentum vector (i.e., the plane of the trajectory) is constant in the two-body problem. A two-dimensional analysis of the motion is usefully carried out in the orbit plane after introducing a non-rotating reference frame. The related right-handed set of unit vectors is
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The direction of the unit vector 
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 is arbitrary.



The distance r from the main body and the anomaly  define the spacecraft position
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A rotating frame, centered on the spacecraft and defined by the right-handed set of unit vectors 
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is also introduced, as the velocity and acceleration components are usefully expressed in this frame. Figure 2.1 provides
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that are differentiated with respect to time to get
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2.2 - Velocity and acceleration components

The velocity vector



[image: image97.wmf]m

v

v

n

v

v

j

v

i

v

v

r

r

r

r

r

r

r

r

)

(

)

(

J

J

J

J

J

J

J

cos

sin

sin

cos

+

+

-

=

+

=


is described by its radial and tangential components that are obtained by computing the first derivative of the position vector
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One obtains
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In a similar way the derivative of the velocity vector
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provides the radial and tangential components of the acceleration vector
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2.3 - First-Order Scalar Equations of Motion

The integration of the first-order scalar equations of motion may be required in some cases; for instance, when the spacecraft uses the thrust of its engine. A set of variables, suitable for defining the state of the spacecraft, is composed of radius r, anomaly  radial (vr) and tangential (v) components of velocity.



The vector equation of motion
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(where 
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 is the thrust acceleration vector, which is rotated of an angle away from the radial direction), is split in the radial and tangential components
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By using 
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one easily obtains the system of differential equations describing the state of the spacecraft
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The integration can be carried out when one knows the thrust law (i.e., magnitude and direction of the thrust acceleration vector) and four integration constants (e.g., position and velocity components at the initial time).



Notice that no integration is required for Keplerian trajectories: four constants are sufficient to completely describe the spacecraft motion in the orbit plane.

2.4 - Perifocal Reference Frame

The eccentricity vector (i.e., the direction of the semi-major axis) is also constant for Keplerian trajectories; the perifocal reference frame, based on the orbit plane, becomes a suitable choice for the non-rotating frame. The related right-handed set of unit vectors is
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When 
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, all the equations in sections 2.1 and 2.2 still hold, but the true anomaly replaces the angle 
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as the angle
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which defines the orientation of the semi-major axis, is constant.

2.5 - Flight Path Angle

By combining the angular momentum and trajectory equations
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one easily obtains another useful expression for the tangential component of the spacecraft velocity
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The trajectory equation may be written in the form
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which is differentiated with respect to time
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thus providing the flight path angle
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and the radial component of the spacecraft velocity



[image: image121.wmf]n

m

j

J

sin

tan

e

h

v

v

r

=

=




By using the above equations, the velocity components in the perifocal reference frame are written in the form
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2.6 - Period of an Elliptical Orbit

The differential element of area swept out by the radius vector as it moves through an angle d is
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that is
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 Kepler’s second law. The constant is evaluated by assuming that the radius vector sweeps out the entire area of the ellipse
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which permits to obtain the period T of an elliptical orbit, thus demonstrating Kepler’s third law,
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being  b2= a2- c2 = a2 (1 - e2).
2.7 - Time-of-Flight on the Elliptical Orbit

The time-of-flight tP1 from the periapsis P to any point 1 of the elliptic orbit is reduced to the evaluation of the area A(FP1) swept out by the radius vector.
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One introduces an auxiliary circle of radius a. The point C on the circle with the same abscissa as the point 1 is distinguished by its eccentric anomaly E1. By using the Cartesian equations of ellipse and circle
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one realizes that, for the same abscissa (xE=xC) the ordinate ratio yE/yC is b/a (the same conclusion also applies to the segments F1 and FC). Therefore
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and
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where, according to Kepler, the mean motion n and the mean anomaly M
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have been introduced. The angle E is related to the actual spacecraft position
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and by replacing either r or  , one respectively obtains
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The correct quadrant for E is obtained by considering that and E are always in the same half-plane: when is between 0 and , so is E.


When one wants to find the time-of-flight to point 1 from some general point 2, which is not periapsis
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Some care is required if the spacecraft passes k times through periapsis, as 2k must be added to E1.

2.8 - Extension to hyperbola and parabola

The time-of-flight tP1 from the periapsis P to any point 1 of a hyperbolic trajectory is
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where the hyperbolic eccentric anomaly F can be related to either r or 
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The time-of-flight on a parabolic trajectory is
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where the parabolic eccentric anomaly D is
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2.9 - Circular and Escape Velocity, Hyperbolic Excess Speed

On a circular orbit r = rc = const. Dot multiplication of the vector equation of motion by the radial unit vector 
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The circular velocity vc is the speed necessary to place a spacecraft on a circular orbit; a correct direction (
[image: image141.wmf])
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 is also required. One obtains
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Notice that the greater the radius of the circular orbit, the less speed is required to keep the spacecraft in this orbit.



The speed, which is just sufficient to allow an object coasting to an infinite distance, is defined escape velocity ve. The specific mechanical energy
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must be zero, as 
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 at 
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. The above equation implies 
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and the minimum-energy escape trajectory is a parabola. One obtains
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On the same trajectory the escape velocity is not constant; the farther away the spacecraft is from the central body, the less speed it takes to escape the remainder of the gravitational field.



If a spacecraft has a greater speed than the escape velocity, the residual speed at a very large distance from the central body is defined hyperbolic excess velocity 
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. Its value is obtained from the specific mechanical energy
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2.10 - Cosmic Velocities

The cosmic velocities are the theoretical minimum speeds that a spacecraft must reach on leaving the ground

1.
to orbit the Earth
2.
to escape its gravitational pull

3.
to leave the solar system

4.
to hit the Sun


The first and second cosmic velocities correspond, respectively, to the circular and escape velocities, computed using the gravitational parameter (E = 398600 km3/s2) and the mean radius (rE =6371 km) of the Earth
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The circular and escape velocities are then computed using the solar gravitational parameter (S = 1.327•1011 km3/s2) and the mean Sun-Earth distance (RE = 149.5•106 km).
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The former is an averaged value of the Earth heliocentric velocity, the latter the heliocentric velocity just sufficient to escape the solar attraction, for a spacecraft which has left the sphere of influence of the Earth, but is yet at distance RE from the Sun. As the spacecraft heliocentric velocity is the sum of the vectors VE and 
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, these are parallel, if the escape from the Sun is achieved with the minimum velocity relative to the Earth
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The corresponding velocity on leaving the ground (i.e., the third cosmic velocity) is obtained using the energy conservation 
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A similar procedure is used to evaluate the fourth cosmic velocity, but in the heliocentric reference frame the spacecraft must be motionless, to hit the theoretically point-mass Sun. One obtains 
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Appendix
The type of conic orbit is strictly related to the energetic and geometrical parameters. An analysis of the following equations
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produces the conditions presented in the following table. 

	v
	E
	a
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	< ve
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	---
	< 1
	ellipse

	ve
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[image: image159.wmf]¥


	0
	1
	parabola

	> ve
	> 0
	< 0
	> 0
	> 1
	hyperbola


The fulfillment of any condition is a sure sign of orbit type.




By increasing the spacecraft velocity, the trajectory changes in a regular way. Assume that a spacecraft is launched horizontally with velocity vL from the surface of an atmosphere-free Earth. A trajectory external to the surface is impossible before the launch velocity reaches the first cosmic velocity vI; the trajectory would be an internal ellipse, with the launch point at the apocenter, if the Earth had its mass concentrated in the center point. Starting from a degenerate ellipse (e = 1, a = rE/2), the eccentricity progressively decreases until a circular orbit around the Earth is achievable for vL = vI. By increasing vL, the orbit is again elliptical, but the launch point is at the pericenter. The larger vL, the greater is the eccentricity, until vL = vII , and the spacecraft in injected into a parabolic trajectory. The following trajectories are hyperbolae of increasing energy, until, for infinite launch velocity, the spacecraft moves on a degenerate hyperbola (
[image: image160.wmf]¥
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), i.e., a straight line tangent to the Earth surface. In all this sequence, the semi-latus rectum p increases in a very regular way. 

Chapter 3

Three-Dimensional Analysis of Motion
3.1 - Basic Reference Frames
A space mission occurs in a three-dimensional environment and the spacecraft motion must be accordingly analyzed. The first requirement for describing an orbit is a suitable inertial reference frame. In the case of trajectories around the Sun, the heliocentric frame based on the ecliptic plane (that is, the plane of the Earth’s motion) is an obvious choice. For satellites of the Earth, a geocentric frame based on the equatorial plane is preferred. For both systems the unit vectors 
[image: image161.wmf]3

g

r

 parallel to the Z-axes are therefore defined; their direction is towards the north. The X-axis is common to both system and is the equinox line which is line-of-intersection of the fundamental planes; its positive direction is from the Earth to the Sun on the first day of spring or the vernal equinox. The unit vector 
[image: image162.wmf]1
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 points towards the constellation Aries (the ram). The Earth’s axis of rotation actually exhibits a slow precession motion and the X-axis shifts westward with a period of 26000 years (a superimposed oscillation with a period of 18.6 years derives from the nutation of the Earth’s axis, which is due to the variable inclination of the lunar orbit on the ecliptic plane). For computations, the definition of both systems is based on the direction of the line-of-intersection at a specified date or epoch (in astronomy, an epoch is a moment in time for which celestial coordinates or orbital elements are specified; the current standard epoch is J2000.0, which is January 1st, 2000 at 12:00). The unit vectors 
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 are uniquely defined to form orthogonal right-handed sets.



The spacecraft position could be described by Cartesian components; the use of the distance from the center and two angles is usually preferred. The declination  is measured northward from the X-Y plane; the right ascension is measured eastward on the fundamental plane from the vernal equinox direction.

3.2 – Classical Orbital Elements

A Keplerian trajectory is uniquely defined by 6 parameters, for instance, one could use the initial values for the integration of the second-order vector equation of motion, i.e., the spacecraft position and velocity at epoch. A different set, which provides an immediate description of the trajectory, is preferable. The classical orbital elements are widely used. Only 4 elements are necessary in the two-dimensional problem: three parameters describe size, shape, and direction of the line of apsides; the fourth is required to pinpoint the spacecraft position along the orbit at a particular time. The remaining 2 parameters describe the orientation of the orbital plane.



The classical orbital elements are

1. eccentricity e (shape).

2. semi-major axis a or semi-latus rectum p (size).

3. inclination i (plane orientation): the angle between 
[image: image164.wmf]3
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 and angular momentum 
[image: image165.wmf]h

r

.

4. longitude of the ascending node plane orientation: the angle in the fundamental plane measured eastward from 
[image: image166.wmf]1
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 to the ascending node (the point where the spacecraft crosses the fundamental plane while moving in the northerly direction).

5. argument of periapsis pericenter direction): the angle in the orbit plane between the ascending node and the periapsis, measured in the direction of the spacecraft motion.
6. true anomaly 0 (spacecraft position) at a particular timet0 or epoch; it is sometime replaced by time of periapsis passage T.
Some of the above parameters are not defined when either inclination or eccentricity are zero. Alternate parameters are

· longitude of periapsis , which is defined when i = 0.
· argument of latitude at epoch u0 = 0 , which is defined for e = 0.
· true longitude at epoch ℓ0 = 0 0 = u0 , which remains defined when i = 0 or e =0.
3.3 – Determining the orbital elements

The orbital elements are easily found starting from the knowledge of the Cartesian components of position and velocity vectors 
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 and 
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 at a particular time t0 in either reference frame defined in section 3.1. One preliminarily computes the components of the constant vectors
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and therefore the unit vectors
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that, starting from the central body, define respectively the directions normal to the orbit plane, and towards the spacecraft, the ascending node, and the pericenter, respectively.



The orbital elements are
1. 
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In a similar way one evaluates the alternate parameters
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(the last two equations hold only for zero inclination).

3.4 – Determining Spacecraft Position and Velocity

After the orbital elements have been obtained from the knowledge of 
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at a specified time, the problem of updating the spacecraft position and velocity is solved the perifocal reference frame using the closed-form solution of the equation of motion. The position and velocity components for a specific value of the true anomaly are found using the equations presented in Section 2.5. The procedure in Section 2.7 permits the evaluation of the time of passage at the selected anomaly. The 
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 components in the geocentric-equatorial (or heliocentric-ecliptic) frame can be obtained using a coordinate transformation.

3.5 – Coordinate Transformation

The more general problem of the coordinate transformation is presented for the specific case of passage from perifocal to geocentric-equatorial components.



The characteristics or a vector (magnitude and direction) are maintained in the change of frame
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A dot product with unit vector 
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By repeating the same procedure, one obtains the transformation matrix
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or, in more compact form
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By applying the procedure used to obtain A to the inverse transformation from geocentric-equatorial to perifocal components, the transpose matrix AT is found to be equivalent to the inverse matrix A-1. This is however a general propriety of the transformations between orthogonal basis. 



Each element of A is the dot product between two unit vectors, that is, the cosine of the angle between them. For instance, A11 is evaluated by means of the law of cosines (see Appendix) for the sides of the spherical triangle defined by the unit vectors 
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The procedure is however cumbersome. It is better to split the transformation in three phases, after introducing two auxiliary reference frames 

· 
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The frames used for each phase coincide after a simple rotation about one of the coordinate axes; the rotation angle is referred to as an Euler angle. Each transformation matrix is quite simple
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and matrix multiplication 
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 provide the overall transformation matrix
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Euler’s theorem states that one rotation about a suitable axis can bring any two frames into coincidence. Three parameters (one for the rotation angle plus two for the axis orientation) define the rotation. Equivalently a maximum of three Euler angle rotations are sufficient to obtain the frame coincidence. The order in which rotations are performed is not irrelevant, as matrix multiplication is not commutative. Singularities, e.g., when the orbit is circular or equatorial, cannot be avoided unless a fourth parameter is introduced.

3.6 – The Measurement of Time

The sidereal day is the time DS required for the Earth to rotate once on its axis relative to the “fixed stars”. The time between two successive transits of the Sun across the same meridian is called an apparent solar day. Two solar days would not be exactly the same length because the Earth’s axis is not exactly perpendicular to the ecliptic plane and the Earth’s orbit is elliptic. The Earth has to turn slightly more than a complete rotation relative to the fixed stars, as the Earth has traveled 1/365th of the way on its orbit in one day. The mean solar day (24 h or 86400 s) is defined by assuming that the Earth is in a circular orbit with the actual period, and its axis is perpendicular to the orbit plane.



The constant length of the sidereal day is obtained by considering that, during a complete orbit around the Sun (1 year), the Earth performs one more revolution on its axis relative to the fixed stars than to the Sun. One obtains 
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The local mean solar time on the Greenwich meridian is called Greenwich Mean Time (GMT), Universal Time (UT), or Zulu (Z) time (slight differences in their definition are here neglected). 


The Julian calendar was introduced by Julius Caesar in 46 BC in order to approximate the tropical year, and be synchronous with the seasons. The Julian calendar consisted of cycles of three 365-day years followed by a 366-day leap year. Hence the Julian year had on average 365.25 days; nevertheless it was a little too long, causing the vernal equinox to slowly drift backwards in the calendar year.


The Gregorian calendar, which presently is used nearly everywhere in the world, was decreed by Pope Gregory XIII, for whom it was named, on  February 24th, 1582, in order to better approximate the length of a solar year, thus ensuring that the vernal equinox would be near a specific date. The calendar is based on a cycle of 400 years comprising 146,097 days; leap years are omitted in years divisible by 100 but not divisible by 400, giving a year of average length 365.2425 days. This value is very close to the 365.2424 days of the vernal equinox year (which is shorter than the sidereal year because of the vernal equinox precession). The last day of the Julian calendar was October 4th, 1582 and this was followed by the first day of the Gregorian calendar October 15th, 1582. The deletion of ten days was not strictly necessary, but had the purpose of locating the vernal equinox on March 21st.



The Julian day or Julian day number (JD) is introduced to map the temporal sequence of days onto a sequence of integers. This makes it easy to determine the number of days between two dates (just subtract one Julian day number from the other). The Julian day is the number of days that have elapsed since 12 noon GMT (for astronomers a “day” begins at noon, also according to tradition, as midnight could not be accurately determined, before clocks) on Monday, January 1st, 4713 BC in the proleptic (i.e., extrapolated) Julian calendar (note that 4713 BC is -4712 using the astronomical year numbering, that has year 0, whereas Gregorian calendar directly passes from 1 BC to 1 AD). The day from noon on January 1st, 4713 BC to noon on January 2nd, 4713 BC is counted as Julian day zero. The astronomical Julian date provides a complete measure of time by appending to the Julian day number the fraction of the day elapsed since noon (for instance, .25 means 18 o'clock).



Given a Julian day number JD, the modified Julian day number MJD is defined as MJD = JD - 2,400,000.5. This has two purposes:

· days begin at midnight rather than noon;
· for dates in the period from 1859 to about 2130 only five digits need to be used to specify the date rather than seven.
JD 2,400,000.5 designates the midnight of November 16th/17th, 1858; so day 0 in the system of modified Julian day numbers is November 17th, 1858.


The Julian day number (JD), which starts at noon UT on a specified date (D, M, Y) of the Gregorian or Julian calendar, can be computed using the following procedure (all divisions are integer divisions, in which remainders are discarded; astronomical year numbering is used, e.g., 10 BC = -9). After computing
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for a date in the Julian calendar
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To convert the other way, for the Gregorian calendar compute
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or, for the Julian calendar,
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then, for both calendars,
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3.7 – Derivative in a Rotating Reference Frame

Consider a base reference frame (which is not necessarily fixed) and another frame defined by the unit vectors 
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, and rotating with constant angular velocity 
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 with respect to the base frame. The time derivative of a generic vector
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with respect to the base coordinate system is
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It is easily proved that
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and therefore
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where the subscript R denotes a time derivative as it appears to an observer moving with the rotating frame. This rule is independent of the physical meaning of vector 
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.



In particular, when one takes the first and second time derivative of position 
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 in an inertial frame
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The second equation of dynamics, when written in a rotating frame becomes
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where, besides the resultant of the applied forces 
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(named Coriolis and centrifugal force, respectively) must be added,

3.8 – Topocentric Reference Frame

The launch of a satellite or a radar observation is made from a point on the Earth surface. The propulsive effort or the measured signal is connected to a rotating reference frame centered on the launch pad or radar location (topos in ancient greek). The obvious fundamental plane is the local horizon and the Z-axis points to the zenith. The X-axis points southward along the local meridian, and the Y-axis eastward along the parallel. The right-handed set of unit vectors 
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The vectors 
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 and 
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 are here used to express position and velocity relative to the topocentric frame, that is, as they appear to an observer fixed to the frame. The magnitude and two angles (the elevation above the horizon and the azimuth measured clockwise from north) are often preferred to the Cartesian components.
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Nevertheless, the energy achieved by the spacecraft with the launch is directly related to the distance from the central body
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and to the absolute velocity (i.e., with respect to a non-rotating reference frame)
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where 
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 decreases from the maximum value ueq = 464.6 m/s at the equator, to zero at either pole. The components of the absolute velocity are therefore
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One should note that azimuth and elevation angles of the absolute velocity (v, v) are different from the same angles (w, w) for the relative velocity.


As far as vector magnitudes are concerned,
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In fact the launch strategy aims to obtain v (the effective velocity for orbital motion) larger than w (the rocket velocity attainable by means of the propellant only). In order to obtain the maximum benefit from the Earth rotation, u should be as high as possible and 
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. The last requirement implies w1 = w3 = 0, that is, w = 0 and w = /2.
3.9 – Satellite Ground Track 

Information on overflown regions and satellite visibility from an observer on the ground requires the knowledge of the motion of the satellite relative to the Earth’s surface. This motion results from the composition of the Keplerian motion of the satellite with the Earth rotation on its axis. The track of a satellite on the surface of a spherical Earth is the loci of the intersections of the radius vector with the surface. The altitude and the track on a chart of the Earth constitute a quite useful description of the satellite motion.



The ground track of a satellite moving on a Keplerian orbit is a great circle, if the Earth is assumed spherical and non-rotating. Suppose that the satellite overflies point S of declination at time t. Consider the meridians passing through S and the ascending node N. Complete a spherical triangle NMP with an equatorial arc of angular length between the meridians, the third vertex being the pole P. The ground track will split this triangle into two smaller ones (NMS and NMP). By applying the law of sines to either triangle, one respectively obtains



[image: image256.wmf]u

i

u

i

sin

sin

sin

sin

sin

sin

sin

=

Þ

=

d

p

d

)

2

/

(




[image: image257.wmf]u

i

i

u

sin

cos

cos

sin

sin

2

sin

2

sin

2

sin

sin

sin

d

a

y

p

p

p

d

p

a

=

D

Þ

-

=

-

-

=

D

)

(

)

/

(

)

/

(

)

/

(


The equations on the right side provide the track in a non-rotating frame. The angular position of N with respect to the equinox line (i.e., 
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) is called local sidereal time (
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). The law of sines from the triangle NMP also provides 



[image: image260.wmf]y

d

sin

cos

cos

=

i


a quite important equation that will be discussed in the following chapter.



Geographical latitude La and longitude Lo are needed to locate point S in a cartographical representation of the Earth surface. The former is simply La = the latter, Lo = G, requires the knowledge of the Greenwich sidereal time
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The angle G0 at t0 is often given as the Greenwich sidereal time at 0:00 of January, 1st of a specified year (in these cases G0 is close to 100 deg, with less than 1 deg oscillations due to the non-integer number of the days in a year).
3.10 – Ground Visibility

For the sake of simplicity, consider a satellite moving a circular orbit of altitude z above the ground. Adequate visibility from a base L on the Earth surface requires a minimum elevation above the horizon, dependent on radiofrequency and characteristics of the radio station. The satellite is seen from the base when its position on the ground track is inside a circle, which is drawn around L on the sphere, and whose radius has angular length The same angle describes the Earth surface around the satellite and visible from it.

The law of sines of plane trigonometry to the triangle OLS (S is the limit position for visibility) 
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provides the angle 
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and the maximum distance between visible satellite and base
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which is related to the power required for data transmission.



The time of visibility depends on

· the length of the ground track inside the circle (the closer to L the passage, the longer the track);

· the satellite altitude; (the higher z the lower the spacecraft angular velocity i.e., the time to cover a unit arc of the ground track).

Notice that the visibility zone is a circle on the sphere. On a cartographic representation of the Earth surface, the same zone is again a circle for an equatorial base, but is increasingly deformed for bases located at increasing latitudes. 
Appendix – Spherical Trigonometry
Consider a sphere of unit radius. The curve of intersection of the sphere and a plane passing through the center is a great circle. A spherical triangle is a figure formed on the surface of a sphere by three great circular arcs intersecting pairwise in three vertices (two triangles are actually created, one smaller, or inner, and one larger, or outer, with the inner triangle being assumed). The sum of the angles of a spherical triangle is greater than between  and 3


The study of angles and distances on a sphere is known as Spherical Trigonometry and is essentially based on two basic equations

1. the law of cosines for the sides (a similar one for the angles exists)

2. the law of sines.

Let a spherical triangle be drawn on the surface of a unit sphere centered at point O, with vertices A, B, and C. The unit vectors from the center of the sphere to the vertices are 
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, and 
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, respectively. The length of the side BC, denoted by a, is seen as an angle from the center of the sphere. The angle on the spherical surface at vertex A is the dihedral angle between planes AOB and AOC, and is denoted A.

1. By using two different ways to compute
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and equating the results, one obtains the law of cosines for the sides
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2. After computing
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one recognizes that the result is independent of the selected vertex on the basis of the geometrical meaning of the numerator (see Eq. A.4 in Chapter 1). The law of sines is therefore
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Chapter 4

Earth Satellites
4.1 – Introduction

Several aspects of satellite launch and operation are analyzed in this chapter. The orbit cannot be reached directly from the ground and part of the propulsive effort is done at high altitude with a reduced efficiency. The orbit is perturbed by non-Keplerian forces, mainly aerodynamic drag and Earth asphericity, in the proximity of the planet, solar and lunar gravitation for satellites orbiting at the highest altitudes. The choice of the orbital parameters is not free: the satellite operates in strict connection with the ground, from and to which continuously gets and transmits data. The mission starts with the ascent to the orbit, that is greatly dependent on the geographical location of the launch base. Orbital maneuvers may be required for the achievement of the final orbit. Maneuvering is more often necessary to correct injection errors and maintain the operational orbit compensating for the effects of perturbations (orbital stationkeeping).

4.2 – The cost of thrusting in space
The simplest way of changing the specific energy of a satellite of mass m is the use of the engine thrust T provided by exhausting an adequate mass flow (
[image: image272.wmf]m
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) of propellant. A thrust impulse T dt is applied to a spacecraft in the absence of gravitational and aerodynamic forces. This hypothesis is not too restrictive: for instance, it is compatible with the presence of gravitation, if the displacement dr in the time interval dt is negligible. 
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where c is the engine effective exhaust velocity. The mass expenditure dm (< 0) represents the cost, which is directly related to the infinitesimal velocity increment. 



The burn time of a chemical engine is short when compared with the orbital period. The impulsive model (infinite thrust applied for infinitesimal time, therefore at constant radius) can surely be assumed during an interplanetary mission. In the case of satellites orbiting the Earth, the model still holds without excessive errors; in any case it would correspond to the theoretical minimum propellant consumption, as the whole propulsive effort is concentrated in the optimal position for using the thrust. A different model (finite-thrust maneuver), which takes into account the finite magnitude of the available thrust, provides more accurate results. The use of this model is absolutely necessary when electric propulsion is exploited. The thrust level determines the angular length of the maneuvers and is qualified by comparing the thrust and gravitational accelerations. The thrust acceleration available in present spacecraft permits low-thrust few-revolution interplanetary trajectories and very-low-thrust multi-revolution maneuvers orbit transfers around the Earth.



Assume that an impulsive maneuver is carried out to provide an assigned energy increment E to a spacecraft moving on any Keplerian trajectory. The thrust direction and the velocity increment 
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 form an angle with the velocity 
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 just before the maneuver. The final velocity is 
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and the assigned energy increment
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suggests that the v magnitude, i.e., the cost, is minimized

· by applying the thrust in the point of the largest velocity on the initial trajectory;

· by vectoring the thrust parallel to the velocity ( = 0 for E > 0;  =  for E < 0).

If a more general point of view is adopted, the specific mechanical energy is differentiated keeping the position r constant
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In order to obtain the same energy increment with the minimum propellant consumption, one should avoid

· misalignment losses (i.e., wasting part of the thrust to rotate the spacecraft velocity);

· gravitational losses (i.e., letting the gravity reduce the velocity while the spacecraft moves away from the central body).

4.3 – Energetic aspects of the orbit injection

A spacecraft in a circular orbit of radius rc is considered:
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As the radius increases from the minimum theoretical value r( = 6371 km, the velocity continuously decreases from the maximum value vI = 7.91 km/s. The period increases starting from 84m 24s, because the spacecraft becomes slower on a longer orbit. Figure 4.1 presents the kinetic, gravitational, and total energy. For a higher orbit the kinetic energy diminishes, but the twofold increment of the potential energy prevails, and a greater propulsive effort is required to attain the orbit.



The same Fig. 4.1 also applies to an elliptic orbit with a = rc, which is equivalent to the circle from the energetic point of view, but has a lower pericenter. One should note that kinetic and potential energies are not constant along the elliptic orbit; the values of Fig. 4.1 are only attained when the satellite passes through the minor axis. When compared with non-equivalent ellipses, the circular orbit has the minimum energy among orbits with equal pericenter, and the maximum energy if the same apocenter is assumed.
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Fig. 4.1 – Energy of circular orbits



Consider the ascent to an orbit of semi-major axis a2. The equivalent velocity on the ground v0eq, that corresponds to the orbit energy,
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is easily computed; it is comprised between the first and second cosmic velocities. Unfortunately one impulsive velocity increment on the Earth surface does not permit to attain an orbit with rP > r( . The spacecraft will pass again through the point where the engine has been turned off at the end of the injection maneuver: the last application of thrust must occur at 
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Two impulsive burns are therefore necessary. By means of a first velocity impulse v0, the spacecraft leaves the ground (point 0) on a ballistic trajectory with an apogee (point 1) with coincides with the perigee (point 2) of the final ellipse (r1 = r2), thus avoiding misalignment losses during the second burn 
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. The required energy increase is obtained by means of two increments of kinetic energy
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The comparison between the actual (
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(squares have been used for the sake of simplicity). The mechanical energy is constant during the ballistic ascent; therefore, for assigned r2,
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and v0 results to be an increasing function of v1. Therefore
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and the loss, which is actually gravitational, is reduced if the ballistic trajectory reaches the injection point with the highest value of the velocity v1, that is, with the largest value of the semi-major axis. The spacecraft should depart horizontally from a ground base located at the antipodes of the injection point.

4.4 – Injection errors

Consider an ascent to a circular orbit, carried out according to the model presented in the previous section. Suppose that the injection point has been exactly attained; an error v2 on the velocity magnitude and on the flight path angle after the injection burn are separately considered, and their effect on the perigee of the final orbit is analyzed.



By differentiating both sides of the energy equation considering r as fixed
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which corresponds to a variation dz = 2da of the orbit altitude at the antipodes of the injection point. Therefore
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and a 1‰ defect on v2 (7.8 m/s at 200 km altitude) produces a 4‰ reduction (26.3 km) of the perigee height, whereas an exceeding v2 increases the apogee altitude of the same amount.


An error in any direction on the flight path angle lowers the perigee:
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Thus, an error of 1 mrad (3m 26s) reduces the perigee altitude by 6.6 km.
4.5 – Perturbations 

The Keplerian trajectories are conic sections that describe the relative motion of two spherically symmetric bodies subjected only to their mutual gravitational attraction. In the real world there are other forces, that however are quite small as compared to the main gravitational force, and the orbits of planets and satellites can be approximated very well by conic sections. The actual trajectories are therefore called perturbed Keplerian orbits.



The six orbital parameters are uniquely determined by position and velocity of the spacecraft at some instant. They are not constant for a perturbed trajectory, but the spacecraft appears continuously passing from a Keplerian orbit to another. The keplerian orbit that at specific time has the same orbital elements of the perturbed trajectory is called osculating orbit. The osculating orbital elements of a spacecraft are the parameters of its osculating conic section, which varies with time. In general they present a linear trend (secular variation) with superimposed long-period oscillations, due to interactions with variations of another element, and shorter-period oscillations usually related to phenomena repeated every orbital revolution.



The equation of motion can be written in the form
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where 
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 is the acceleration due to the perturbing forces. In general, no closed-form analytical solution can be obtained and one has to resort to numerical techniques (special perturbation methods) or to approximate analytical solutions (general perturbation methods).

4.5.1 – Special perturbations

Special perturbation methods numerically integrate the equation of motion and provide the trajectory of a particular spacecraft, starting from its initial conditions at a specific time. 



The simple numerical integration of the perturbed equation of motion is called Cowell’s method. It makes no use of the fact that the actual trajectory can be approximated by a conic section. The integration step is small, even though the Cartesian coordinates of the original method are replaced by other (e.g., spherical) coordinates.



Encke’s method assumes the osculating orbit at some instant as a reference Keplerian orbit which is known by means of the analytical solution of the unperturbed equation of motion
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The deviation of the actual trajectory from the reference orbit
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is numerically integrated. The integration step can be chosen larger than in Cowell’s method, at least until perturbations accumulate and r becomes large. Then, the reference orbit is rectified, i.e., a new reference orbit is assumed. 



Numerical difficulties usually arise when the difference of two nearly equal quantities is computed; therefore one poses
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where
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and the following form of the equation of motion is used
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where f is a function of q, which can be evaluated by means of an expansion into a binomial series, 


[image: image301.wmf](

)

K

+

÷

ø

ö

ç

è

æ

×

×

×

-

÷

ø

ö

ç

è

æ

×

×

+

÷

ø

ö

ç

è

æ

×

-

÷

ø

ö

ç

è

æ

=

+

-

=

-

4

3

2

2

3

2

!

4

9

7

5

3

2

!

3

7

5

3

2

!

2

5

3

2

!

1

3

1

1

q

q

q

q

q

f


as done by Enke, but it can also be written as
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The method of variation of orbital parameters rewrites the vector equation of perturbed motion as a system of differential equation for the orbital parameters of the osculating orbit. Only the rate of change of the osculating parameters, which derives from the perturbing forces, is integrated. Moreover, the effects of perturbations are made evident by the clear geometrical significance of the orbital elements. 

4.5.2 – General perturbations

General perturbations cover the analytical methods in which a perturbing acceleration is selected, expanded into series, which are opportunely truncated and integrated termwise. Analytical expressions describe the general effects of a particular perturbing force on the orbital elements, and permit a physical interpretation of them.

4.6 – Perturbed satellite orbits

The most important perturbing forces acting on an artificial Earth satellite are due to lunar and solar attraction, asphericity of the Earth, aerodynamic drag, solar radiation, and electromagnetic effects.

4.6.1 – Lunar and solar attraction

Consider the three-body system, where a third body perturbs the motion of an Earth satellite. Assume an inertial reference frame: 
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 define the positions of the spacecraft in the inertial frame and relative to the perturbing body, respectively; 
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 refer to the Earth with the same meaning. One writes the dynamical equilibrium equation for spacecraft and Earth
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and operates as in section 1 to obtain, after posing p = GMp,
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where the disturbing acceleration is
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which, for << R, reduces to
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We are instead interested to the case of a satellite close to the Earth (
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); the angular position with respect to the third body is replaced by the angular position around the Earth 
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The distance from the perturbing body is also replaced by means of the geometrical relationship
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using the binomial series expansion 



[image: image314.wmf](

)

(

)

2

2

1

1

1

x

n

n

x

n

x

n

-

+

+

@

+


neglecting terms of order  3
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One obtains
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A comparison with the gravitational acceleration a due to the Earth, gives
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The relative importance of the perturbation thus increases with the third power of the satellite distance from the Earth. In particular the main perturbations on geostationary satellites are the disturbing attractions of Sun and Moon (the former being approximately a half of the second).

Table 4.1 Perturbing attraction of a third body (r = 42,200 km).

	Disturbing Body
	p/(
	R/r
	(ap/a()max

	Moon
	0.0123
	9.1
	3.3∙10-5

	Sun
	332,946
	3.48∙103
	1.6∙10-5


4.6.2 – Asphericity of the Earth

The gravitational potential of the Earth in the two-body problem (
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) is related to a spherically symmetric body, but the Earth is bulged at the equator, flattened at the poles and generally asymmetric. The asphericity of the Earth is the dominant perturbation for satellites orbiting outside of the densest layers of the atmosphere and below the altitude of some tens thousands of kilometers. The excess of mass near the equator produces a slight torque on the satellite about the center of the Earth. The torque causes the orbit plane to precess, and the line of nodes moves westward for direct orbits and eastward for retrograde satellites. The rotation of the line-of-apsides is also produced.



The gravitational acceleration is written as the gradient of a scalar function 
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which describes the gravitational potential of the Earth in the rotating geocentrical equatorial frame. The function 
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(sin La) is the Legendre’s polynomial of degree n in sin La 
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(sin La) is the associated Legendre polynomial of degree n and order m. The Newtonian point-mass potential is joined by terms in Jn, called zonal harmonics, and terms in Jn,m, called tesseral and sectorial harmonics for n ≠ m and n = m, respectively. The zonal harmonics, which describe the deviation in the north-south direction, are dependent on latitude only. The tesseral and sectorial harmonics give the deviation in the east-west direction; the former are dependent on both latitude and longitude, the latter on longitude only. The terms with n = 1 are absent, as the center of the frame and the center of mass coincide. 



The even numbered zonal harmonics are symmetric about the equatorial plane and the odd numbered harmonics antisymmetric. The second zonal coefficient J2 describes the Earth oblateness (its value of 1.082637∙10-3 is three order of magnitude greater than any other); J3 describes the Earth as pear-shaped. The term J2,1 is very small, as the axis of rotation of the Earth practically coincides with a principal axis of inertia; J2,2 describes the ellipticity of the Earth equator. 


The effects of the tesseral and sectorial harmonics are averaged and generally cancelled by the rotation of the Earth inside the planar orbit of the satellite. An important exception is the geostationary satellites that maintain a fixed position relative to the Earth and are very sensitive to the east-west anomalies in the gravitational field. In many instances, only the zonal harmonics are considered, i.e., the gravitational field is assumed to be axial symmetric and the reference frame does not need to rotate with the Earth. 


In particular, if the method of general perturbation is applied retaining only the second zonal harmonic, three orbital elements exhibit changes after one orbital revolution 
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where 
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 is the nodal or draconian period. The regression of the line-of-nodes and the rotation of the line-of-apsides are both decreasing functions of the orbit altitude. The direction of the former rotation changes passing through the polar orbit (i = /2); the semi-axis rotates in the same direction of the satellite motion for i < 63.4° or i > 116.6°.
4.6.3 – Aerodynamic drag

The motion of the satellite inside the Earth’s atmosphere is accompanied by lift and drag forces. The former is negligible in most cases; the latter is opposite to the velocity vector relative the atmosphere, with magnitude
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The area of the frontal section depends on the uncertain attitude of the satellite. The drag coefficient is close to 2, as the flow is of the free-molecular type and the drag is due to the molecular impact on the satellite surface. The atmospheric density is rapidly decreasing with the altitude; it is also a function of season, local solar time, and solar activity, resulting barely predictable. The magnitude of the aerodynamic drag can be only roughly estimated. It is the most important perturbation below 200 km altitude, whereas can be completely neglected above 1000 km.



A satellite in eccentric orbit with perigee altitude below 700 km is subjected to aerodynamic forces that are much stronger at the periapsis than at the apoapsis, due to the combined effects of velocity and density. The apogee is rapidly lowered; after the orbit has become near-circular (r ≈ const) 
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On the basis of a rough guess
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The altitude reduction rate is ruled by the atmospheric density and becomes as faster as the satellite is lower.

4.6.4 – Radiation pressure
The direct solar radiation, the solar radiation reflected by the Earth, and the radiation emitted by the Earth itself may be regarded as a low of photons that hits the satellite surface imparting a momentum. The corresponding radiation pressure is quite small and usually negligible, except for spacecraft with high volume/mass ratio. 

4.6.5 – Electromagnetic effects

A satellite may acquire electrostatic charges in the ionized high-altitude atmosphere; electric currents circulate in its subsystems. Interactions with the Earth’s magnetic field are possible but generally negligible.
4.7 – Geographical constraints

The operations of satellites for communication, intelligence, navigation, remote sensing are evidently related to the Earth’s surface. Any spacecraft however needs to download data to ground stations, which in turn detect its position and velocity. Satellite reconfiguration and orbital maneuvers usually occur in sight of a command station. 



The analysis of the ground track is therefore essential: according to the equation 
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the ground track crosses the equator at an angle equal to the orbital inclination. The maximum latitude north or south of the equator that a satellite pass over just equals the orbit plane inclination i ( – i, for retrograde orbits). A global surveillance satellite should be in polar orbit to overfly the Earth’s entire surface. The Earth rotation displaces the ground track westward by the angle the Earth turns during one orbital period. If the time required for n complete rotations of the Earth on its axis (n sidereal days) is an exact multiple of the orbital period, the satellite will retrace the same path over the Earth (a correction is required to account for the additional displacement due to the regression of the line-of-nodes). This is a desirable property for a reconnaissance satellite; in general it might be necessary when the number of available ground station is limited and the orbit has a great inclination.



The geographical position of the launch site (see Appendix) is even more important. Latitude and launch azimuth influence both the rocket overall performance and the orientation of the orbit plane. The first stage booster falls to the Earth several hundreds kilometers downrange and the launch azimuth is constrained to assure the passage over uninhabited and traffic-free regions. According to section 3.8, the same rocket has a greater payload from a base close to the equator (→ 0), and for an easterly launch (=/2): the orbital inclination will be the minimum achievable and equal to the latitude of the launch site. Greater inclinations, until the limit value  - , are achievable from the same site with payload reduction; retrograde orbits require a westerly launch.

Table 4.2 Launch Sites around the World

	Launch Site
	Country
	Latitude
	Longitude

	Alcantara
	Brazil
	2.4° S
	44.4° W

	Jiuquan
	China
	41.1° N
	100.5° E

	Taiyuan
	China
	39.1° N
	112.0° E

	Xichang
	China
	28.2° N
	102.0° E

	Kourou
	France
	5.2° N
	52.8° W

	Sriharikota
	India
	13.7° N
	80.2° E

	Palmachim
	Israel
	31.9° N
	34.7° E

	Malindi
	Italy
	2.9° S
	40.2° E

	Kagoshima
	Japan
	31.3° N
	131.1° E

	Tanegashima
	Japan
	30.4° N
	131.0° E

	Baikonur
	Kazakhstan
	45.6° N
	63.4° E

	Kapustin Yar
	Russia
	48.5° N
	45.8° E

	Plesetsk
	Russia
	62.8° N
	40.4° E

	Svobodniy
	Russia
	51.7° N
	128.0° E

	Cape Canaveral
	United States
	28.5°N
	80.6° W

	Kodiak
	United States
	57.4° N
	152.3° W

	Sea Launch
	United States
	0.0°  
	154.0°W

	Vandemberg
	United States
	34.8° N
	120.6° W




The same inclination can be achieved with two different launch azimuths, if both are inside the safety constraints. In some cases the longitude of the ascending node is also assigned; the launch is possible twice a day when the launch site passes through the envisaged orbit plane, id the azimuth constraints can be fulfilled. The lift-off time is strictly fixed for maximum payload. However a fraction of the payload is traded off for more propellant, thus adding maneuvering capabilities and permitting an out-of-plane ascent. A launch window of several minutes is created around the theoretical launch time: the rocket departs as soon as all the requirements for a reliable launch are met.

4.8 – Practical orbits

The satellite orbits may be classified on the basis of their altitude. A low Earth orbit (LEO) is confined between 200 and 600 km, the lower limit because of the atmospheric drag, the upper because of the Van Allen radiation belts, which are harmful to humans and detrimental for solar cells and some instruments. The orbit eccentricity is therefore quite low (e < 0.03). A LEO assures safe manned flight, and constitutes an efficient parking orbit for an interplanetary mission. Moreover it guarantees high photographic resolution at the price of limited ground visibility.



A high Earth orbit (HEO), above 10,000 km altitude, is drag free and safe from radiation; a large part of the Earth’s surface can be seen at one time. In the middle, a medium Earth orbit (MEO) represents a compromise that permits adequately high resolution and low transmission power with a sufficient ground visibility to contain the number of satellites.



Circularity is an appreciate characteristic, but is rarely mandatory, as it implies the costs of a precise injection or the need of corrective maneuvers. High-ellipticity orbits are often used for space probes, as the spacecraft operates at high altitudes for a large part of its lifetime and the launch energy is lower in respect to a circular orbit with the same apogee.



The International Space Station has an operational altitude above Earth between 330 and 425 km (the upper limit altitude is imposed by the rendezvous with Soyuz spacecraft). Station-keeping is necessary because of the atmospheric drag, which would eventually lead to a reentry of the station. The orbital altitude is a trade-off between the 
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needed to reboost the station to a higher orbit and the 
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 needed to send payloads and people to ISS. The inclination of 51.6° is instead the minimum permitted to launches from Baikonur.


High Earth orbits are used by satellite constellations for navigation and positioning systems. The Navigation Signal Timing and Ranging Global Positioning System, (NAVSTAR GPS or simply GPS), is a system used for determining the location of a receiver with precision of about 20 meters, that can be improved to about 10 cm using differential GPS and other error-correcting techniques. The first GPS satellite was launched in February 1978. The GPS is divided into three segments: space, control and user. The space segment consists of a constellation of 24 satellites in 6 orbital planes with inclination 55°. Each satellite circles the Earth twice every day at an altitude of 20,200 km. The satellites carry atomic clocks and constantly broadcast the precise time according to their own clock, along with the orbital elements of their own motion. The control segment comprises several ground stations around the world that are responsible for monitoring the flight paths, providing the orbital parameters to the satellites, and synchronizing their atomic clocks. The user segment consists of a GPS receiver which decodes signals received from (at least) three satellites. 



The satellite positions at time of transmitting are calculated using the broadcasted satellites' orbital parameters. The receiver’s clock is not precise enough, but has good short-term stability and can measure with high precision the differences between the times when the various messages were received. A “pseudorange” from all the satellites is calculated almost simultaneously using the delay between the clock local time and the time when the satellite signals were sent. By means of the same information from a fourth satellite, the clock error is removed and receiver’s position is calculated precisely. If another information concerning position, e.g., local elevation, is available, only signals from three satellites are necessary. When information from more than 4 satellites is accessible, a proper method is used to deal with redundancy. 



Former Soviet Union deployed a similar system, beginning on October 12, 1982. A fully operational GLONASS constellation consists of 24 satellites, deployed in three orbital planes with inclination of about 64.8° and ascending nodes are separated by 120°. Each plane contains eight equally spaced satellites, which orbit the Earth at an altitude of 19,100 km with a period of approximately 11 hours and 15 minutes. Any given satellite passes over the  same spot on the Earth every eighth sidereal day; however, as each orbit plane contains eight satellites, a satellite will pass the same place every sidereal day. The overall arrangement is such that, if the constellation is fully populated, a minimum of five satellites are in view from any given point at any given time.



The ESA Galileo system is not yet operational; the first spacecraft in the system was launched on December 28, 2005. The Galileo constellation will consist of 30 satellites flying in circular orbits 23,616 km above the Earth surface. Each of the three orbital planes has 56° inclination. 


A satellite on a circular direct equatorial orbit with a period equal to a sidereal day is motionless with respect to the ground. At an altitude of 42,200 km this geostationary (GEO) satellite sees almost a half of the Earth’s surface. Three satellites, 120° apart, cover the whole Earth, except small regions around the poles, while are able to communicate between them. Such a satellite is very useful for communications; the reconnaissance role is difficult, as photographic resolution is poor from that altitude.



A geosynchronous satellite has the semi-major axis corresponding to the period of a sidereal day. If it flies on a circular inclined orbit, the satellite has a “figure-eight” ground track between latitudes equal to the inclination and approximately along the same meridian. A non-zero eccentricity would distort the “figure-eight” shape in a way depending also on the argument of perigee.



The geostationary satellite is perturbed by the solar and lunar attractions, that increase the inclination at a rate close to 1° per year, with a minor variation related to the inclination of the lunar orbit plane to the equatorial plane, which oscillates between 18.3° and 28.6° with a period of 18.6 years. The elliptic shape of the Earth equator (described by the second sectorial coefficient J2,2) pulls the spacecraft towards either stable equilibrium longitudes (15°E or 165°W). Maintaining the satellite nominal position requires periodic maneuvers: North-South station-keeping to compensate for the lunar and solar perturbing actions; East-West station-keeping to counteract the Earth asphericity. The required 
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 is about 46 m/s per year. E-W control requires significantly less amount of fuel than N-S station-keeping. Therefore, in some cases aging satellites are only E-W controlled. 



Communication satellites for the high-latitude regions of the northern hemisphere use high-eccentricity Molniya orbits with a period equal to 12 sidereal hours (even though 8-hour or 24-hour periods could also be chosen). The spacecraft spends the most part of the orbital period near the apogee, that  = - /2 locates over the highest latitude north. A constellation of three satellites with displaced ascending nodes (120°) would permit the continuous coverage of the target region. The inclination i = 63.4° is mandatory to avoid the rotation of the line-of-apsides. The same kind of constellation (with  = /2) could be used in principle for the southern hemisphere.



Molniya orbits are named after a series of soviet communications satellites that have been using 63.4° inclined orbits with perigee between 450 and 600 km and apogee near 40,000 km in the Northern Hemisphere since the mid 1960s. Such orbits are easier to achieve from Russia and are better suited to communications with high latitudes than GEOs. The disadvantage is that antenna dish must track the satellite. The 16 operational satellites are divided into two groups (Molniya-1 and Molniya-3, according to their purposes). which are further divided into two constellations of four vehicles in orbital planes spaced 90° apart, but geographical longitudes of the ascending nodes of one constellation are shifted 90° from the other, i.e., the Eastern Hemisphere ascending nodes are approximately 65°E and 155°E, respectively. Since 1989, all Molniya  spacecraft have been launched from the Plesetsk Cosmodrome. Satellite Data System (SDS), a constellation of American military satellites, use Molniya orbits for communication with polar stations, but another possible use is either to intercept Russian communications or to relay data from spy satellites operating over Russia. 



A satellite is on a Sun-synchronous orbit if the line-of-nodes rotates in an easterly direction with the rate of one revolution per year (0.986° per day) that equals the mean angular motion of the Earth about the Sun. This rate can be naturally obtained from the Earth oblateness by carefully selecting semi-latus rectum and inclination of a retrograde low Earth orbit, for instance a 600 km altitude circular LEO with i = 97.76°. Sun-synchronous satellites are very attractive for Earth observation because of constant ground lighting conditions; a suitable orbital period would add a synchronism with the ground. A satellite with the line-of-nodes perpendicular to the Sun-Earth line will move approximately along two meridians at local sunrise and sunset, respectively, a favorable condition for intelligence. The spacecraft could also remain continuously in sunlight, thus resorting only on solar cells for power (one should note that a short eclipse behind either pole is possible during few months every year).

Appendix – Launch Sites

This appendix describes the sites that are presently operative for orbital launches. The order of countries is that of their first injection into orbit.
A.1 – Former Soviet Union

Baikonur Cosmodrome is the oldest space-launching facility; it is located near Tyuratam in a region of flat grasslands in the former Soviet republic of Kazakhstan, northeast of the Aral Sea. In 2005 the Kazakh government extended the rent to Russia to 2050. Baikonur is a large cosmodrome with nine launch complexes encompassing fifteen launch pads. Baikonur is the only cosmodrome launching Proton, Zenit, Energia and Tsyklon space rockets. A new launch complex, for the new Angara rocket is scheduled to be completed in 2009. All Russian manned missions and interplanetary probes are launched from Baikonur, as well as all Space Station flights using Russian launch vehicles, since all non-military launches take place there. Baikonur Cosmodrome is the launch complex where Sputnik 1, Earth's first artificial satellite, was launched. The rocket that lifted Yuri Gagarin, the first human in orbit, was also launched from Baikonur. Launches headed due east are not flown, because lower stages of the rockets might fall into China; range safety restrictions limit launches to inclinations 51.6o, 63o, 64.8-65o, 70.4o, 95.4°. Baikonur is also the only Russian site that has been used to inject satellites into retrograde orbits.


The location of Plesetsk Cosmodrome (62.9°N, 40.7°E) makes it ideal for launching military reconnaissance and communication satellites into polar or high-inclination orbits, inaccessible from Baikonur. Range safety restrictions limit flights from Plesetsk to inclinations 62.8o, 67.1o, 73-74o, 82-83o. The world's first intercontinental ballistic missile (ICBM) base was operational at Plesetsk; the northern location allowed a larger coverage of the continental US than the more southerly Baikonur. Plesetsk Cosmodrome has launched the most satellites since the beginning of the Space Age; it continues to be highly active today, especially for military launches and Molniya communications satellites. There are launch pads for Cosmos, Soyuz and Tsyklon space boosters. Upgrades to launch Zenit were not completed before the fall of the Soviet Union and work was abandoned since the rocket is now built in Ukraine. The Zenit pad is being converted for use with the new all-Russian Angara rocket. The lower net payload in geosynchronous orbit from a northern latitude launch site could be avoided by using lunar gravity to change the orbital plane of the satellite.
Kapustin Yar is the Russian oldest missile test site, but the first orbital launch was Cosmos 1 in 1962. Although used quite often for launches of smaller Cosmos satellites during the 1960s, the number of launches from this site fell dramatically during the 1970s and 1980s to about one orbital launch per year. There have been no launches to orbit since 1987.
Svobodniy Cosmodrome was planned during the 1990s to accommodate the new modular Angara launch vehicles in the medium and heavy categories, as the break-up of the Soviet Union left the main Russian launch site (Baikonur) on foreign territory, while Plesetsk Cosmodrome did not have facilities for large launch vehicles and was not suited for support of launches into lower-inclination orbits. Sufficient funding was not available for this massive project, whereas by 2000 conversion of unfinished Zenit pads for use with Angara begun at Plesetsk. Svobodniy could still be useful to reach the 51.6° orbit of the International Space Station, but operations would be limited to Rokot, Strela and Start-1 launches. Only five launches have taken place at the underused Svobodny site, which is going to close after the lease of the Baikonur Cosmodrome has been renewed in 2005.

A.2 – United States 

The Cape Canaveral area, which has used to test missiles since 1949 and now hosts the U.S. Air Force launch facilities known as the Cape Canaveral Air Station, is closer to the equator than most other parts of the United States and allows for eastward launches towards the Atlantic Ocean. Polar launches from Cape Canaveral are not permitted because they would have to fly over populated areas. Orbital inclinations range from 28° up to 57o. Currently, Titan rockets are launched from pads 40 and 41, Delta from 17A and 17B, and Atlas Centaur from 36A and 36B. 
NASA's manned missions also depart from the Cape: Kennedy Space Center, located on Merrit Island adjacent to the U.S. Air Force launch facilities, is NASA's site for processing, launching and landing space shuttles and their payloads, including components of the International Space Station. KSC was established in the 1960s to support the Apollo lunar landings, and Launch Complex 39 was built to accommodate the new rocket Saturn V. It included a hangar (the Vehicle Assembly Building) to hold four rockets, movable service structures and a control center; two launch pads were 5 km to the east of the assembly building. From 1967 through 1973, there were 13 Saturn V launches from Complex 39. After the last Apollo launch, complex 39 was converted to launch the space shuttles.
Vandenberg Air Force Base (VAFB) is on the central Pacific coastline 150 miles northwest of Los Angeles. Vandenberg is the only military installation in the United States from which government and commercial satellites are sent to polar orbits by launching them due south. The base also test fires America's intercontinental ballistic missiles (ICBMs) westward toward the Kwajalein Atoll in the Marshall Islands. Delta rockets take off from space launch complex 2W, Titan from launch complex 4, and Atlas from launch complex 3. Until 1994, Scout rockets were launched from complex 5. 

Wallops Flight Facility, located on Wallops Island, Virginia, is one of the oldest launch sites in the world: the first rocket was launched in 1945. Wallops has been a small NASA launch site for solid-fuel Scout rockets. Some 19 rockets have reached orbit from Wallops, with the last orbital launch in 1985. Recently a commercial launch facility was created by establishing in the existing facilities two pads capable of blasting off small and medium expendable launch vehicles. In 2006 a Minotaur booster made the first orbital launch from Wallops in over 20 years.

The Kodiak Launch Complex (KLC) is a commercial launch site designed for all-solid vehicles but plumbed for possible liquid fueled vehicles. Kodiak Island location, providing a wide launch azimuth and unobstructed downrange flight path, is ideal for launching payloads of up to 3500 kg into low earth polar and Molniya orbits. The first orbital launch of an Athena-1 came in 2001. 

The smooth, concrete-like surface of Edwards Air Force Base in a dry lakebed in Mojave Desert can receive landing space shuttles when weather conditions at Cape Canaveral are unacceptable. White Sands Space Harbor provides NASA with a third space shuttle landing site in the U.S. Istres Base Aèrienne in France, Morón Air Base and Zaragoza Airport in Spain, are NASA's space shuttle trans-Atlantic abort landing (TAL) sites, to be used  if a main engine were to fail after the shuttle no longer could return to the launch site. The shuttle would continue on a ballistic trajectory across the Atlantic Ocean, landing on a runway approximately 45 minutes after launch. 

Sea Launch is a commercial consortium managed by Boeing which has revisited an idea of University of Rome “La Sapienza”. Rockets are launched from a converted Norwegian offshore oil drilling rig, moved to a location off Kiritimati on the equator in the Pacific Ocean, that is, in the optimal position to increase payload capacity and reduce launch costs. All Sea Launch payloads to date have been commercial communications satellites intended for geostationary orbit; all used the three-stage Zenit-3SL launch vehicle, capable of placing up to six tonnes of payload in GEO. The consortium is composed of four companies from the United States (payload fairing and interstage structure), Russia (3rd stage), Ukraine (1st and 2nd stages) and Norway (launch platform and command ship). The launcher and its payload are assembled on a purpose-built ship Sea Launch Commander in Long Beach, California. The rocket is then transferred to a horizontal hangar on the self-propelled launch platform Ocean Odyssey. Both ships then sail about 5000 km in 11 days to international waters near Kiritimati. With the platform ballasted to its launch depth, the hangar is opened, the rocket is automatically moved to a vertical position, and the launch platform crew evacuates to the ship which moves about five kilometers away serving as launch control center. Then, with the launch platform unmanned, the rocket is fueled and launched. Since 1999 the consortium has launched 24 rockets with two failures and one partial failure. After a launch explosion on January 30, 2007, repairs of the launch platform are underway.



The Pegasus launcher is carried aloft by a L-1011 aircraft to approximately 12,000 m over open ocean, where it is released and then free-falls for five seconds before igniting its first stage rocket motor. The aircraft takes off from a conventional runway with minimal ground support requirements and Pegasus can be launched from virtually anywhere on Earth. So far, launches have been conducted from six separate sites (Edwards, Vandenberg, Cape Canaveral, Wallops, Kwajalein, and Gando).

A.3 - Europe
The Kourou space launch complex, known as Centre Spatial Guyanais (CSG), is owned by the French national space agency, CNES. France selected this site in 1964 to replace the Hammaguira launch site in Algeria. When the European Space Agency (ESA) was founded in 1975, France offered to share Kourou with ESA. It is now used by the ESA commercial space launch arm Arianespace to blast ESA's Ariane rockets to space. French Guiana's coastline permits launches into both equatorial and polar Sun-synchronous orbits with inclinations from 1.5° up to 100.5o. CSG is one of the most favorable sites for launches of satellites to geostationary orbit, due to its proximity to the equator. At this latitude, the Earth's rotation gives the maximum additional velocity, and maneuvering the satellite to the desired equatorial orbit is simpler.

After the agreement with ESA the launch complex was modified for use with the Ariane, and the first launch took place from the ELA-1 pad in December 1979. As the Ariane became more successful and the communications satellite launch market boomed, a decision was taken in 1981 to build a second orbital pad, ELA-2. This was completed in 1986 and used to support a high rate of Ariane 4 launches. The final addition was ELA-3 for the all-new Ariane 5 vehicle. After the final Ariane 4 launch in 2003, ELA-1 and ELA-2 were decommissioned and ELA-3 remained the only active orbital pad. The ground facilities include launcher and satellite preparation buildings, launch operation facilities and a solid propellant factory.

New launch complexes for other orbital vehicles are being built at Kourou. Under the terms of a Russo-European joint venture, ESA will augment its own launch vehicle fleet with Soyuz rockets (using them to launch ESA and/or commercial payloads) and the Russians will get access to the Kourou spaceport for launching their own payloads with Soyuz rockets, with the benefit of significant added payload capability due to closer proximity to the equator. As of 2008 the Soyuz launch complex was nearing completion. Work on the Vega pad was underway.

A.4 – Japan 

In 1962, Japan started building its Kagoshima Space Center on leveled hilltops facing the Pacific Ocean close to the city of Uchinoura, in Kagoshima Prefecture on the southern tip of Kyushu Island. It was used first for atmospheric sounding rockets and meteorological rockets, then for space satellite launches. Japan's first six satellites were launched from Kagoshima. The large M-5 orbital rocket was first launched there in 1997. All Japan's scientific satellites are launched from Uchinoura. Launches are limited to two months a year to avoid disturbance of local fisheries. 
The Japan Aerospace eXploration Agency (JAXA) operates the Tanegashima Space Center, a space development facility established in 1969, when Japan's National Space Development Agency (NASDA) was formed, on the southeastern tip of Tanegashima Island, 115 km south of Kyushu. The southern Takesaki Range, with two launch pads, fires sounding rockets and carries out static firings of H2 rocket solid-fuel boosters. The complex's northern Osaki Range has two launch pads; one (Osaki) for lighter J-I rockets, and the other (Yoshinobu) for heavier H-IIA rockets. The Yoshinobu Firing Test Stand is a firing test facility, where testing of the H-IIA first stage engine LE-7A takes place. Other facilities at the TNSC are for assembly of spacecraft, and for radar and optical tracking of launched spacecraft.
A.5 - China
Today, China has three main spaceports. Jiuquan Space Launch Center was built north of Jiuquan City in the 1960s in the Gobi desert 1,000 miles west of Beijing. It was China's first launch site. Jiuquan was originally used to launch scientific and recoverable satellites into medium or low earth orbits at high inclinations, as permissible azimuth was limited to southeastern launches into 57-70° orbits to avoid overflying Russia and Mongolia. Western nations had called this site Shuang Cheng Tzu. Due to the site's geographical location, most Chinese commercial flights take off from other spaceports.
Xichang Space Launch Center is China's launch site for geosynchronous orbit launches. Most of the commercial satellite launches of Long March vehicles have been from Xichang. It was built 40 miles north of Xichang City in 1978. Its first launch was in 1984. Xichang launches Long March space rockets. The local population lives near the launch pads. When the first Long March 3B rocket crashed in 1996 on a hillside a mile from the launch pad, six persons were killed and 57 injured. When a Long March 2E exploded in 1995, debris killed six and injured 23 in a village five miles downrange. 

Taiyuan Space Launch Center started as test base for missiles and rockets too big to fly from Jiuquan. Now it is China's launch site for polar satellites. TSLC is primarily used to launch meteorological satellites, earth resource satellites and scientific satellites. U.S. Space Command refers to the site as Wuzhai. Its single space launch pad opened in 1988 for launching Long March 4 space rockets ferrying remote sensing, meteorological and reconnaissance satellites to polar orbits. Long March 2C rockets carried Iridium satellites from there for the U.S. in the 1990s. 
A.6 - Australia 

In 1967, a U.S. Redstone rocket carried the Australian science satellite, WRESAT, to orbit from Woomera. In 1971, the science satellite Black Knight 1 rode atop a British rocket called Black Arrow in a launch from Woomera. Thereafter, British missile and space projects have been progressively cancelled and no further satellites have been launched from Woomera. Nowadays most pads at Woomera are abandoned, but there are still launches of sounding rockets. However Woomera is usually cloud free, and would be a good location for access to polar orbits. 

A.7 - India
Originally called the Sriharikota High Altitude Range (SHAR), the Satish Dhawan Space Centre, located on the Sriharikota Island on India's east coast, was renamed in 2002 after the death of Satish Dhawan, former chairman of the Indian Space Research Organization (ISRO). SHAR became operational in October 1971 when three Rohini rockets were launched. The SHAR facility now consists of two launch pads, with the second one being a universal launch pad, accommodating all of the launch vehicles used by ISRO.

A.8 - Israel
Palmachim Air Force Base, south of Tel Aviv near the town of Yavne in the Negev Desert, is Israel’s coastal missile test site from which the Shavit satellite launch vehicle is also launched. A due-west launch over the Mediterranean is required to avoid overflying Arab countries, resulting in unique retrograde orbits.
A.9 - Italy
Italy's San Marco Range, in Formosa Bay three miles off the coast of Kenya, close to the town of Malindi, was actually composed of two oil platforms and two logistical support boats. The San Marco platform is the launch pad. Santa Rita platform holds the firing control blockhouse. The Italian launch team, trained by NASA, successfully launched its first San Marco satellite on December 15th 1964 from Wallops Island under NASA supervision. The first rocket from San Marco platform lifted into orbit the second Italian satellite on April 26th 1967. A total of 29 rockets were launched, primarily sounding rockets; 9 low-payload orbital launches were also made, using the solid-propellant Scout rocket; among them 4 Italian satellites. The last use of the offshore platform was in 1988 for launching the fifth San Marco satellite. The platforms are now in a very decrepit state, but the ground segment is in use and continues to track NASA, ESA and Italian satellites. 
A.10 - Brazil
The Alcantara Launch Center, Centro de Lançamento de Alcântara (CLA), is located on the Atlantic coast in the north of Brazil. Only sounding rockets and the so far ill-fated VLS rocket were launched from CLA. The location is very close to the equator; in fact, the Alcantara site is the closest to the equator of any in the world. This gives the launch site a big advantage in launching geosynchronous satellites, similar to the European launch site at Kourou.












_1193594885.unknown

_1193841607.unknown

_1194522490.unknown

_1194791802.unknown

_1272257890.unknown

_1301903653.unknown

_1301908639.unknown

_1301911736.unknown

_1301928842.unknown

_1301909562.unknown

_1301908593.unknown

_1301386954.unknown

_1301386969.unknown

_1301808219.unknown

_1299996695.unknown

_1222109457.unknown

_1244908681.unknown

_1244908694.unknown

_1244908715.unknown

_1244908528.unknown

_1195208409.unknown

_1199729828.unknown

_1209974062.unknown

_1195784512.unknown

_1195062397.unknown

_1195144555.unknown

_1194606656.unknown

_1194632436.unknown

_1194718255.unknown

_1194791521.unknown

_1194791767.unknown

_1194724369.unknown

_1194725006.unknown

_1194725017.unknown

_1194718522.unknown

_1194711091.unknown

_1194717468.unknown

_1194672857.unknown

_1194607982.unknown

_1194623196.unknown

_1194613641.unknown

_1194607538.unknown

_1194607773.unknown

_1194606736.unknown

_1194522882.unknown

_1194599047.unknown

_1194606497.unknown

_1194606634.unknown

_1194593004.unknown

_1194522790.unknown

_1194522876.unknown

_1194522564.unknown

_1194018352.unknown

_1194201245.unknown

_1194286324.unknown

_1194510652.unknown

_1194510718.unknown

_1194506044.unknown

_1194286504.unknown

_1194202584.unknown

_1194246843.unknown

_1194284676.unknown

_1194252968.unknown

_1194202593.unknown

_1194245572.unknown

_1194201319.unknown

_1194106534.unknown

_1194117249.unknown

_1194200851.unknown

_1194117086.unknown

_1194019665.unknown

_1194029498.unknown

_1194029945.unknown

_1194106397.unknown

_1194029523.unknown

_1194028762.unknown

_1194029264.unknown

_1194018450.unknown

_1193846895.unknown

_1193849464.unknown

_1194017629.unknown

_1194018131.unknown

_1194016275.unknown

_1194017617.unknown

_1193855195.unknown

_1193849160.unknown

_1193849300.unknown

_1193847049.unknown

_1193847204.unknown

_1193846959.unknown

_1193846321.unknown

_1193846750.unknown

_1193846767.unknown

_1193846741.unknown

_1193842721.unknown

_1193845870.unknown

_1193841923.unknown

_1193601178.unknown

_1193602385.unknown

_1193758609.unknown

_1193759296.unknown

_1193760096.unknown

_1193760204.unknown

_1193841597.unknown

_1193760814.unknown

_1193760170.unknown

_1193760030.unknown

_1193760057.unknown

_1193759957.unknown

_1193758964.unknown

_1193759051.unknown

_1193758626.unknown

_1193757940.unknown

_1193758299.unknown

_1193758413.unknown

_1193757994.unknown

_1193752381.unknown

_1193757775.unknown

_1193757913.unknown

_1193752505.unknown

_1193752530.unknown

_1193747869.unknown

_1193751202.unknown

_1193751493.unknown

_1193750099.unknown

_1193602445.unknown

_1193601334.unknown

_1193601436.unknown

_1193602131.unknown

_1193601575.unknown

_1193601411.unknown

_1193601247.unknown

_1193601313.unknown

_1193601236.unknown

_1193596796.unknown

_1193597537.unknown

_1193599929.unknown

_1193599960.unknown

_1193599906.unknown

_1193599678.unknown

_1193596888.unknown

_1193597169.unknown

_1193596811.unknown

_1193595762.unknown

_1193595901.unknown

_1193596112.unknown

_1193595790.unknown

_1193595645.unknown

_1193595743.unknown

_1193595002.unknown

_1193294757.unknown

_1193410612.unknown

_1193415301.unknown

_1193417202.unknown

_1193499442.unknown

_1193509998.unknown

_1193510080.unknown

_1193512332.unknown

_1193513975.unknown

_1193594426.unknown

_1193513956.unknown

_1193511181.unknown

_1193510019.unknown

_1193500535.unknown

_1193502115.unknown

_1193499479.unknown

_1193469767.unknown

_1193488994.unknown

_1193489085.unknown

_1193489095.unknown

_1193475274.unknown

_1193469746.unknown

_1193416593.unknown

_1193416731.unknown

_1193416952.unknown

_1193416667.unknown

_1193416050.unknown

_1193416062.unknown

_1193415751.unknown

_1193415794.unknown

_1193412963.unknown

_1193414648.unknown

_1193415232.unknown

_1193414482.unknown

_1193412781.unknown

_1193412880.unknown

_1193412621.unknown

_1193410691.unknown

_1193385361.unknown

_1193408534.unknown

_1193410351.unknown

_1193410541.unknown

_1193410241.unknown

_1193397943.unknown

_1193408419.unknown

_1193397803.unknown

_1193397929.unknown

_1193396711.unknown

_1193396966.unknown

_1193386105.unknown

_1193374732.unknown

_1193376657.unknown

_1193376950.unknown

_1193377769.unknown

_1193376850.unknown

_1193376882.unknown

_1193374779.unknown

_1193373795.unknown

_1193373983.unknown

_1193295872.unknown

_1193296187.unknown

_1193295836.unknown

_1192982137.unknown

_1193284734.unknown

_1193286861.unknown

_1193291395.unknown

_1193293676.unknown

_1193294746.unknown

_1193293168.unknown

_1193293297.unknown

_1193293363.unknown

_1193292177.unknown

_1193291291.unknown

_1193291347.unknown

_1193287531.unknown

_1193286285.unknown

_1193286418.unknown

_1193286162.unknown

_1193232912.unknown

_1193248849.unknown

_1193284420.unknown

_1193284447.unknown

_1193250719.unknown

_1193283713.unknown

_1193250834.unknown

_1193249973.unknown

_1193248099.unknown

_1193248184.unknown

_1193247888.unknown

_1193167087.unknown

_1193203510.unknown

_1193203876.unknown

_1193210888.unknown

_1193220327.unknown

_1193220414.unknown

_1193220130.unknown

_1193204496.unknown

_1193203824.unknown

_1193202361.unknown

_1193202927.unknown

_1193202307.unknown

_1193164126.unknown

_1193166688.unknown

_1193163320.unknown

_1192982889.unknown

_1193162193.unknown

_1192808754.unknown

_1192857645.unknown

_1192894053.unknown

_1192944197.unknown

_1192981341.unknown

_1192981790.unknown

_1192944499.unknown

_1192945201.unknown

_1192944963.unknown

_1192944271.unknown

_1192895863.unknown

_1192943487.unknown

_1192895645.unknown

_1192892665.unknown

_1192893406.unknown

_1192893466.unknown

_1192892922.unknown

_1192857944.unknown

_1192860300.unknown

_1192861676.unknown

_1192868105.unknown

_1192861557.unknown

_1192860282.unknown

_1192857923.unknown

_1192816703.unknown

_1192857190.unknown

_1192857334.unknown

_1192818534.unknown

_1192818902.unknown

_1192857057.unknown

_1192818620.unknown

_1192818454.unknown

_1192812949.unknown

_1192816264.unknown

_1192816543.unknown

_1192815699.unknown

_1192809742.unknown

_1192811716.unknown

_1192809147.unknown

_1192801651.unknown

_1192806781.unknown

_1192807881.unknown

_1192808722.unknown

_1192807320.unknown

_1192802918.unknown

_1192803559.unknown

_1192801674.unknown

_1192782949.unknown

_1192800627.unknown

_1192801090.unknown

_1192799574.unknown

_1192800573.unknown

_1192790340.unknown

_1192780136.unknown

_1192782863.unknown

_1192781515.unknown

_1192772968.unknown

_1192779634.unknown

_1192772363.unknown

