Chapter 5

Orbital Maneuvers
5.1 – Introduction

Orbital maneuvers are carried out to change some of the orbital elements

· when the final orbit is achieved via a parking orbit;

· to correct injection errors;

· to compensate for orbital perturbations (stationkeeping).

The task is usually accomplished by the satellite propulsion system, and occasionally, in the first two cases, by the rocket last stage.



Elementary maneuvers, that involve a maximum of three parameters and require a maximum of three impulses, are analyzed in the following. When it is necessary, two or more elementary maneuvers are combined and executed according to a more complex strategy that permits, in general, a minor propellant consumption. Nevertheless, it has been demonstrated the any optimal impulsive maneuver requires a maximum of four burns.



The propellant consumption for the maneuver (
[image: image1.wmf]p
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) is evaluated after the total velocity change has been computed. The equation presented in Section 4.2 is easily integrated under the hypothesis of constant effective exhaust velocity c
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and provides the relationship between the spacecraft final and initial mass, which is known as rocket equation or Tsiolkovsky’s equation. Therefore
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5.1 – One-impulse maneuvers

A single velocity impulse would be sufficient to change all the orbital elements. Simpler cases are analyzed in this section. Subscripts 1 and 2 denote characteristics of the initial and final orbit, respectively.

5.1.1 – Adjustment of perigee and apogee height

An efficient way of changing the height of perigee and apogee uses an increment of velocity provided at the opposite (first) apsis. Misalignment losses and rotation of the semi-major axis are avoided. Once the required variation 
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 of the second apsis altitude is known, one easily deduces the new length of the semi-major axis 
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, which is used in the equation energy to compute the velocity 
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 at the first apsis after the burn, which therefore must provide 
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For small variations of the second apsis radius, the differential relationship of section 4.4 can be applied, obtaining
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One should note that in some maneuvers the apsides may interchange their role (from periapsis to apoapsis, and vice versa).

5.1.2 – Simple rotation of the line-of-apsides

A simple rotation 
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 of the line of apsides without altering size and shape of the orbit is obtained by means of one impulsive burn at either point where the initial and final ellipses intersect on the bisector of the angle 
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. The polar equation of the trajectory and the constant position of the burn point in a non-rotating frame imply
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which are combined and give
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Energy and angular momentum are unchanged by the maneuver; this corresponds to conserving, respectively, magnitude and tangential component of the velocity. Therefore, the only permitted change is the sign of the radial component 
[image: image14.wmf]r
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. The velocity change required to the propulsion system
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is the same in either point eligible for the maneuver. The rightmost term has been obtained using the relationship
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5.1.3 – Simple plane change

To change the orientation of the orbit plane requires that the velocity increment 
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 has a component perpendicular to the original plane. A simple plane change rotates the orbital plane by means of one impulsive burn (r = const), without altering size and shape of the orbit. Energy and magnitude of the angular momentum are unchanged, which corresponds to conserving, respectively, magnitude and tangential component of the velocity. Therefore, the radial component 
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is also unchanged, while 
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is rotated of the desired angle 
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From the resulting isosceles triangle in the horizontal plane one obtains



[image: image21.wmf](

)

2

sin

2

/

y

J

D

=

D

v

v




An analysis of the azimuth equation presented in Section 4.7 indicates that a simple plane change at (implies i <  (Fig. 5.1); moreover the inclination after the maneuver cannot be lower than the local latitude (
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). In a general case the maneuver changes both inclination and longitude of the ascending node. If the plane change aims to change the inclination, the most efficient maneuver is carried out when the satellite crosses the equator (therefore at either node) and  is maintained. 
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Fig. 5.1 Efficiency of an inclination change carried out at different latitudes



The plane rotation involves a significant velocity change (10% of the spacecraft velocity for a 5.73 deg rotation) with the associated propellant expenditure without energy gain. Gravitational losses are not relevant and the maneuver is better performed where the velocity is low. In most cases, by means of careful planning, the maneuver can be avoided or executed with a lower cost in the occasion of a burn aimed to change the spacecraft energy.

5.1.4 – Combined change of apsis altitude and plane orientation

Consider an adjustment of the apsis altitude combined which a plane rotation 
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, which is therefore the angle included between the vectors 
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. Without any loss of generality, suppose 
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. If the maneuvers are separately performed, the rotation is conveniently executed before the velocity has been increased, and the total velocity change is
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The velocity increment of the combined maneuver is given by
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and the benefit achieved 
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 is presented in Fig. 5.2 for different values of 
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[image: image32.wmf]1

cos

@

D

y

, 
[image: image33.wmf]e

c

v

v

v

v

D

=

-

@

D

1

2

, and the plane rotation is actually free.
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Fig. 5.2 Benefit of the combined change of apsis altitude and plane orientation

5.2 – Two-impulse maneuvers

In this case the maneuver starts at point 1 on the initial orbit, where the spacecraft is inserted into a transfer orbit (subscript t) that ends at point 2 on the final orbit.

5.2.1 – Change of the time of periapsis passage

A change 
[image: image35.wmf]T
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 of the time of periapsis passage permits to phase the spacecraft on its orbit. This maneuver is important for geostationary satellites that need to get their design station and keep it against the East-West displacement caused by the Earth’s asphericity. Assuming 
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, the maneuver is accomplished by moving the satellite on an outer waiting orbit where the spacecraft executes n complete revolutions. The period 
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 of the waiting orbit is selected so different from the period 
[image: image38.wmf]T

 of the nominal orbit that
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or
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The rightmost condition, corresponding to an inner orbit, is preferred when 
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 is larger than 
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, and if the perigee of the waiting orbit is high enough above the Earth atmosphere. 



Two equal and opposite 
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 are needed: the first puts the spacecraft on the waiting orbit; the second restores the original trajectory. According to general considerations, the engine thrust is applied at the perigee and parallel to the spacecraft velocity. The required 
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 is smaller if 
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 is reduced by increasing n. A time constraint is necessary to have a meaningful problem and avoid the solution with an infinite number of revolution and infinitesimal 
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.



The problem is equivalent to the rendezvous with another spacecraft on the same orbit. One should note the thrust apparently pushes the chasing spacecraft away from the chased one.

5.2.2 – Transfer between circular orbits

Consider the transfer of a spacecraft from a circular orbit of radius r1 to another with radius r2, without reversing the rotation. Without any loss of generality, assume r2 > r1 (the other case only implies that the velocity-change vectors are in the opposite direction). The transfer orbit (subscript t) must intersect or at least be tangent to both the circular orbits
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Fig. 5.3 Transfer between circular orbits:

Permissible parameters for the transfer orbit

The permitted values of et and pt are in the shadowed area of Fig. 5.3, inside which a suitable point is selected. One first computes the energetic parameters of the transfer orbit 
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and then velocity and flight path angle soon after the first burn
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The first velocity increment is



[image: image51.wmf]1

1

1

2

1

2

1

2

1

cos

2

j

c

c

v

v

v

v

v

+

+

=

D


The second velocity increment at point 2 is evaluated in a similar way.

5.2.3 – Hohmann transfer

The minimum velocity change required for a two-burn transfer between circular orbits corresponds to using an ellipse, which is tangent to both circles:
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On leaving the inner circle, the velocity, parallel to the circular velocity, is
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and the velocity increment provided by the first burn is
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The velocity on reaching the outer circle
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is again parallel, but smaller than the circular velocity. Therefore
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The time-of-flight is just half the period of the transfer ellipse
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One should note that the Hohmann transfer is the cheapest but the slowest two-burn transfer between circular orbits. Increasing the apogee of the transfer orbit, which is kept tangent to the inner circle, soon reduces the time-of-flight.

5.2.3 – Noncoplanar Hohmann transfer

A transfer between two circular inclined orbits is analyzed (
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); a typical example of application is the geostationary transfer orbit (GTO) that moves a spacecraft from an inclined LEO to an equatorial GEO. The axis of the Hohmann ellipse coincides with the intersection of the initial and final orbit planes. Both impulses provide a combined change of apsis altitude and plane orientation (Section 5.1.4). The greater part of the plane change is performed at the apogee of the transfer orbit, where the spacecraft velocity attains the minimum value during the maneuver. Nevertheless, even for 
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, a small portion of the rotation (typically 10% for LEO-GEO transfers) can be obtained by the perigee burn almost without any additional cost.

5.3 – Three-impulse maneuvers

In special circumstances, some maneuvers, which have been analyzed in the previous sections, are less expensive if executed according to a three-impulse scheme, which is essentially a combination of two Hohmann transfers; subscript 3 denotes the point where the intermediate impulse is applied.
5.3.1 – Bielliptic transfer

The cost of the Hohmann transfer does not increase continuously, but it reaches its maximum for 
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 (Fig. 5.4). Beyond this value, it is convenient to begin the mission on a transfer ellipse with apogee at 
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, where the spacecraft trajectory is not circularized, but a smaller 
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 moves the spacecraft directly into a Hohmann transfer towards the radius 
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, where the spacecraft is slowed down to make its trajectory circular. The larger is 
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, the smaller is the total cost of this bielliptic maneuver; one easily realizes that the minimum total 
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 is obtained with a biparabolic transfer. In this case two impulses transfer the spacecraft from a circular orbit to a minimum energy escape trajectory and vice versa; a third infinitesimal impulse is given at infinite distance from the main body to move the spacecraft between two different parabolae. 



The biparabolic transfer has better performance than the Hohmann transfer for 
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 and 
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, also the bielliptic maneuver may perform better than the Hohmann transfer, but the intermediate radius 
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 should be great enough (Fig. 5.4).



The biparabolic transfer permits a maximum 
[image: image74.wmf]v
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 reduction of 8% for 
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, but the minor propellant consumption of bielliptic and biparabolic transfers is counterbalanced by the increment of the flight time. A three-impulse maneuver is rarely used for transfers between coplanar orbits; it becomes more interesting for noncoplanar transfer as a large part of the plane change can be performed with the second impulse far away from the central body.
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Fig. 5.4 Comparison of bielliptic, biparabolic and Hohmann transfers

5.3.2 – Three-impulse plane change

A plane change can be obtained using two symmetric Hohmann transfers that move the spacecraft to and back from a far point where a cheaper rotation is executed. The rotation is in particular free at infinite distance from the central body. Assume that the spacecraft is in a low-altitude circular orbit. The velocity change of a simple plane rotation is equated to the v required to enter and leave an escape parabola
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Fig. 5.5 Three impulse plane rotation for a circular orbit

(dotted lines: rotation at point 3; solid lines: split rotation)
However a bielliptic transfer performs better for a single-burn rotation between 38.94 deg and 60 deg (dotted lines in Fig.5.5). Moreover, a small fraction 
[image: image79.wmf]1
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 of the total rotation can be efficiently obtained ( see Section 5.1.4) on leaving the circular orbit and then again on reentering it. In this case the three-impulse bielliptic plane change is convenient for any amount of rotation, until the biparabolic maneuver takes over.
5.3.3 – Three-impulse noncoplanar transfer between circular orbits
Similar concepts also apply to the noncoplanar transfer between circular orbits of different radii. As it appears in Fig. 5.6, the range of optimality of the bielliptic transfer becomes narrower as the radius-ratio increases above unity, either if the rotation is concentrated at the maximum distance 
[image: image80.wmf]3

r

, or if it is split among the three burns.
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Fig. 5.6 Three impulse transfer between noncoplanar circular orbits

(dotted lines: rotation at point 3; solid lines: split rotation)

In particular, the classical noncoplanar Hohmann transfer is optimal for 
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 deg in the case of the LEO-GEO transfer, which is presented in Fig. 5.7. For  just a little above this limit, the optimal maneuver is biparabolic.
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 Fig. 5.7 Three impulse noncoplanar LEO-GEO transfer

(dotted lines: rotation at point 3; solid lines: split rotation)

Chapter 6

Lunar Trajectories
6.1 – The Earth-Moon system

The peculiarity of the lunar trajectories is the relative size of the Earth and Moon, whose mass ratio is 81.3, which is far larger than any other binary system in the solar system, the only exception being Pluto and Caron with a mass ratio close to 7. The Earth-Moon average distance, that is, the semi-major axis of the geocentric lunar orbit, is 384,400 km. The two bodies actually revolve on elliptic paths about their center of mass, which is distant 4,671 km from the center of the planet, i.e., about 3/4 of the Earth radius. The Moon's average barycentric orbital speed is 1.010 km/s, whilst the Earth's is 0.012 km/s. The total of these speeds gives the geocentric lunar average orbital speed, 1.022 km/s.



The computation of a precision lunar trajectory requires the numerical integration of the equation of motion starting from tentative values for position and velocity at the injection time, when the spacecraft leaves a LEO parking orbit to enter the ballistic trajectory aimed at the Moon. Solar perturbations (including radiation), the oblate shape of the Earth, and mainly the terminal attraction of the Moon must be taken into account. Because of the complex motion of the Moon, its position is provided by lunar ephemeris. Approximate analytical methods, which only take the predominant features of the problem into account, are required to narrow down the choice of the launch time and injection conditions.

6.2 – Simple Earth-Moon trajectories

A very simple analysis permits to assess the effect of the injection parameters, namely the radius of the parking orbit r0, the velocity v0, and the flight path angle 0, on the time-of-flight. The analysis assumes that the lunar orbit is circular with radius R = 384,400 km, and neglects the terminal attraction of the Moon. The spacecraft trajectory is in the plane of the lunar motion, a condition that actual trajectories approximately fulfill to avoid expensive plane changes.



One first computes the constant energy and angular momentum 
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and then the geometric parameters of the ballistic trajectory
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Solving the polar equation of the conic section, one finds the true anomaly at departure and at the intersection with the lunar orbit (subscript 1)



[image: image89.wmf]0

0

0

cos

r

e

r

p

-

=

n





[image: image90.wmf]1

1

1

cos

r

e

r

p

-

=

n


(
[image: image91.wmf]R

r

=

1

)

The time-of-flight is computed using the equations presented in Chapter 2. The phase angle at departure 
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, i.e., the angle between the probe and the Moon as seen from the Sun,
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is related to the phase angle at arrival 
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 (zero for a direct hit, neglecting the final attraction of the Moon). Due to the assumption of circularity for both the lunar and parking orbits, the angle 
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 actually fixes the times of the launch opportunities.



The total propulsive effort is evaluated by adding 
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, which is the theoretical velocity required to attain the parking orbit (Section 4.3), and the magnitude of the velocity increment on leaving the circular LEO
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The results presented in Fig. 6.1 suggest to depart with an impulse parallel to the circular velocity (
[image: image98.wmf]0
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) from a parking orbit at the minimum altitude that would permit a sufficient stay, taking into account the decay due to the atmospheric drag.
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Fig. 6.1 Approximate time-of-flight of lunar trajectories.
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Fig. 6.2 Lunar trajectories departing from 320 km circular LEO with 0 = 0.



Other features of the trajectories based on a 320 km altitude LEO are presented in Fig. 6.2 as a function of the injection velocity v0. The minimum injection velocity of 10.82 km/s originates a Hohmann transfer that has the maximum flight time of about 120 hour. The apogee velocity is 0,188 km/s, and the velocity relative to the Moon has the opposite direction, resulting in an impact on the east edge of the satellite. A modest increment of the injection velocity significantly reduces the trip time. For the manned Apollo missions, the life-support requirements led to a flight time of about 72 hour, that also avoided the unacceptable non-return risk of the hyperbolic trajectories. Further increments of the injection velocity reduce the flight time and the angle 
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 swept by the lunar probe from the injection point to the lunar intercept. In the limiting case of infinite injection speed, the trajectory is a straight line with a trip-time zero, 
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, and impact in the center of the side facing the Earth.



The phase angle at departure 
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 presents a stationary point (that is, a maximum, for 
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= 10.94 km/s. In this condition
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and an error on the initial speed, e.g., a higher speed, reduces the swept angle, but the error is almost exactly compensated (
[image: image106.wmf]1
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) by the less time required to the Moon to reach the new intersection point. The practical significance of this condition is extremely scarce, because of the too simplified model. However, it reminds the reader that actual space missions are designed looking not only for reduced 
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, but also for safety from errors.

6.3 – The patched-conic approximation

Any prediction of the lunar arrival conditions requires accounting for the terminal attraction of the Moon. A classical approach is bases on the patched-conic approximation, which is still based on the analytical solution of the two-body problem. The spacecraft is considered under the only action of the Earth until it enters the Moon’s sphere of influence: inside it, the Earth attraction is neglected. The concept of sphere of influence, which was introduced by Laplace, is conventional, as the transition from geocentric to selenocentric motion is a gradual process that takes place on a finite arc of the trajectory where both Earth and Moon affect the spacecraft dynamics equally. Nevertheless this approach is an acceptable approximation for a preliminary analysis and mainly for evaluating the injection 
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. The solar perturbation is the main reason that renders the description of the trajectory after the lunar encounter only qualitative.


The previous assumption of circular motion of the Moon in the same plane of the spacecraft trajectory is retained. The probe enters, before the apogee, the lunar sphere of influence whose radius
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has been assumed according to Laplace definition.

6.3.1 – Geocentric leg
The geocentric phase of the trajectory may be specified by four initial conditions: 
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: an iterative process permits the determination of the point where the spacecraft enters the lunar sphere of influence. The phase angle 
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 is conveniently replaced by another independent variable, that is, the angle 
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 which specifies the position of point 1, where the trajectory crosses the boundary of the lunar sphere of influence.



The computation of the geocentric leg is carried out using the equations presented in Section 4.2, with the only remarkable exception of radius and phase angle at end of the geocentric leg, which are obtained by means of elementary geometry
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The conservation of energy and angular momentum provide the geocentric velocity and flight path angle at point 1
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, since the arrival occurs prior to apogee). It is worthwhile to note that the energy at the injection must be sufficient to reach point 1, or, from a mathematical point of view, to make the argument of the square root positive.
6.3.2 – Selenocentric leg
The spacecraft position and velocity on entering the sphere of influence must be expressed in a non-rotating selenocentric reference frame (subscript 2) in order to compute the trajectory around the Moon. The position is simply given by the radius 
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and its direction is described by the angle 
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with the radius vector 
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 (a positive angle means a counterclockwise lunar trajectory). By means of the dot product of the vector equation with the tangential unit vector 
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, one obtains 
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The geocentric velocity v1 is quite low (few hundred m/s) and the selenocentric velocity v2 is mainly due to the Moon velocity. In the most cases v2 is greater than the lunar escape velocity at the boundary of the sphere of influence and the spacecraft will approach the Moon along a hyperbola.


The energy and angular momentum of the selenocentric motion
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are now computed, and the geometry of the trajectory about the Moon follows
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Three possibilities arise:

1. 
[image: image130.wmf]M
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(1738 km), and the spacecraft hits the Moon;

2. 
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 and engines are used to insert the spacecraft into a lunar orbit;

3. 
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 and the spacecraft flies by the Moon and crosses again the sphere of influence.

The first case comprises, together with a destructive impact, a soft landing on the lunar surface without passing through an intermediate parking orbit. A retrorocket system or inflatable cushions are required.



Entering in a lunar orbit require a braking maneuver at the periselenium
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where the velocity after the maneuver 
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depends on the semi-major axis ao which is selected for the lunar orbit. The velocity change is reduced by a low periselenium (minimum gravitational losses) and a high eccentricity orbit with a far apocenter, which however should permit the permanent capture by the Moon. Circular orbits are preferred when a rendezvous is programmed with a vehicle ascending from the lunar surface.



If no action is taken at the periselenium, the spacecraft crosses again the sphere of influence at point 4 with relative velocity v4 = v2 in the outward direction (
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is needed for the analysis of the successive geocentric path (subscript 5 denotes the same exit point on the boundary of the sphere of influence as subscript 4, but refers to quantities measured in a non-rotating reference frame centered on the Earth). One should note that the Moon has traveled the angle 
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 around the Earth in the time elapsed during the selenocentric phase; its velocity 
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 has rotated counterclockwise of the same angle. Alternately, the exit point can be rotated clockwise of the angle 
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, if one is interested in keeping the horizontal direction of the Earth-Moon line. In this case
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(the upper sign for 
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, i.e., counterclockwise lunar trajectory).



A passage in front of the leading edge of the moon rotates clockwise the relative velocity: one obtains 
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. On the contrary, a passage near the trailing edge of the moon rotates counterclockwise the relative velocity: 
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 may be sufficient to escape from the Earth gravitation. Only the former trajectory is apt to a manned mission aimed to enter a lunar orbit, as, in the case of failure of the braking maneuver, it should result into a low-perigee return trajectory.

6.4 – Three-body problem
The restricted three-body problem assumes that the mass of one of the bodies is negligible and the motion of the two massive bodies is not influenced by the attraction of the third body. The circular restricted three-body problem is the special case in which two of the bodies are in circular orbits, an acceptable approximation for the Sun-Earth and Earth-Moon systems. 



In general, the three-body problem cannot be solved analytically (i.e. in terms of a closed-form solution of known constants and elementary functions), although approximate solutions can be calculated by numerical methods or perturbation methods. The three-body problem is however very complex and difficult to solve and analyze; its solution can be chaotic. The restricted problem (both circular and elliptical) was worked on extensively by Lagrange in the 18th century and Poincaré at the end of the 19th century. Poincaré's work on the restricted three-body problem was the foundation of deterministic chaos theory.

6.4.1 – Jacobi’s integral
The restricted three body problem is usefully analyzed in a reference frame with its origin in the center of mass of the system. The x-axis coincides with the line joining the two massive bodies and rotates with angular velocity 
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 around the z-axis. The y-axis completes a right-handed frame. The vector 
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 describes the position of the third body, while 
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 and 
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 are the positions with respect to the main bodies of masses M1 and M2, respectively.



The equation of motion of the third body in the rotating frame is 
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In the circular restricted three-body problem the main bodies are fixed to the rotating frame and the angular velocity 
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 is constant. The previous equation simplifies to
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(hereafter the dot indicates a time-derivative in the rotating frame). The first two terms on the right-hand side (i.e., the gravitational and centrifugal accelerations) can be written as the gradient of the potential function
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The Coriolis acceleration is a function of the third-body velocity and cannot be included into a potential function. The equation of motion is written in the form
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Scalar multiplication with 
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The potential is not an explicit function of time; therefore
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and by substitution and integration one obtains the Jacobi’s integral
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where 
[image: image160.wmf]v
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 is the velocity of the third body in the rotating frame, and the integration constant C is known as the Jacobi’s constant. One should note that the half of the left-hand side of the Jacobi’s integral is the specific mechanical energy of the third body in its motion relative to the rotating frame. The energy value is 
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 and is kept constant in the circular restricted three-body problem.



The velocity 
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 is related to the velocity 
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and the Jacobi’s integral can also be expressed in terms of absolute velocity as
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that is, a combination of the total specific energy and angular momentum of the third body, which are both constant in an inertial reference frame.
6.4.2 – Non-dimensional equations
The equations of the three-body problem are usually made non-dimensional by using as reference quantities
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for masses, distances, and velocities, respectively. The non-dimensional masses of the primaries are therefore
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and we assume 
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; the non-dimensional angular velocity is unit, and the non-dimensional potential is written as 
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where
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as the non-dimensional distances of the greater and smaller bodies from the origin of the frame are  and 1 - , respectively.
6.4.3 – Lagrangian libration points

The circular restricted three-body problem has stationary solutions (
[image: image172.wmf]0
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). Given two massive bodies in circular orbits around their common center of mass, there are five positions in space, the Lagrangian libration points, where a third body, of comparatively negligible mass would maintain its position relative to the two massive bodies. As seen in the frame which rotates with the same period as the two co-orbiting bodies, the gravitational fields of two massive bodies combined with the centrifugal force are in balance at the Lagrangian points.



In the circular problem, there exist five equilibrium points. Three are collinear with the masses in the rotating frame and are unstable. The remaining two are located 60 degrees ahead of and behind the smaller mass in its orbit about the larger mass. For sufficiently small mass ratio of the primaries, these triangular equilibrium points are stable, such that (nearly) massless particles will orbit about these points that in turn orbit around the larger primary. Perturbations may change this scenario, and an object could not remain permanently stable at any one of these five points. In any case a spacecraft can orbit around them with modest fuel expenditure to maintain such a position, as the sum of the external actions is close to zero.

[image: image173.png]LJ




Fig. 6.3 The five Lagrangian points in the three-body system



The L1 point lies on the line defined by the two main bodies, and between them. An object which orbits the Earth more closely than the Moon would normally have a shorter orbital period than the Moon, but if the object is directly between the bodies, then the effect of the lunar gravity is to weaken the force pulling the object towards the Earth, and therefore increase the orbital period of the object. The closer to the Moon the object is, the greater this effect is. At the L1 point, the orbital period of the object becomes exactly equal to the lunar orbital period. 



The L2 point lies on the line defined by the two large masses, beyond the smaller of the two. On the side of the Moon away from the Earth, the orbital period of an object would normally be greater than that of the Moon. The extra pull of the lunar gravity decreases the orbital period of the object, which at the L2 point has the same period as the Moon. 



If the second body has mass M2 much smaller than the mass M1 of the main body, then L1 and L2 are at approximately equal distances from the second body (L1 is actually a little closer), given by the radius of the Hill sphere
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where R is the distance between the two bodies. The Sun-Earth L1 and L2 are distant 1,500,000 km from the Earth, and the Earth-Moon points 61,500 km from the Moon. 



The L3 point lies on the line defined by the two large bodies, beyond the larger of the two. In the Earth-Moon system L3 is on the opposite side of the Moon, a little further away from the Earth than the Moon is, where the combined pull of the Moon and Earth again causes the object to orbit with the same period as the Moon. 



The L4 and L5 points lie at the third point of an equilateral triangle with the base of the line defined by the two masses, such that the point is respectively ahead of, or behind, the smaller mass in its orbit around the larger mass. L4 and L5 are sometimes called triangular Lagrange points or Trojan points.



The gradient vector 
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is zero at the libration points and their exact position can be found by putting the partial derivatives of the non-dimensional potential to zero: 
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The last equation indicates that all the Lagrangian points are in the plane of the motion of the primaries (
[image: image179.wmf]0
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). The second equation is solved by 
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, which corresponds to the collinear points, and by 
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, which refers to the triangular points.



In the former case the first equation becomes a quintic equation in x
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with three real solutions. In the latter case
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6.4.4 – Surfaces of zero velocity
The potential U is a function only of the position in the non-rotating frame. The surfaces in the xyz-space corresponding to a constant value 
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are called surfaces of zero velocity or Hill surfaces. The constant 
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 corresponds to the total energy of the third body in the non-rotating frame, and in fact represents the maximum value of potential energy that the spacecraft can attain by zeroing its velocity. The spacecraft can only access the region of space with 
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, where the potential energy is less than its total energy.



The surfaces of zero velocity are symmetrical with respect to the xy-plane; only their intersection with this plane will be analyzed in the following. Figure 6.x presents some zero velocity curves and, in particular, those for C1, C2, C3, corresponding to the values of potential in the collinear Lagrangian points. If 
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 is very large, the zero velocity curves consist of three circles: the largest one has approximately radius 
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 and is centered on the origin of the frame; two smaller circles enclose the primaries; a spacecraft orbiting the main body with 
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 can leave the region around M1 and orbit around M2. For 
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 the spacecraft can escape from the system, but only leaving the region around the primaries from the side of the second body. This limit disappears for 
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. Any place can be reached when 
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6.4.5 – Lagrangian point stability
The first three Lagrangian points are technically stable only in the plane perpendicular to the line between the two bodies. This can be seen most easily by considering the L1 point. If an object located at the L1 point drifted closer to one of the masses, the gravitational attraction it felt from that mass would be greater, and it would be pulled closer. However, a test mass displaced perpendicularly from the central line would feel a force pulling it back towards the equilibrium point. This is because the lateral components of the two masses' gravity would add to produce this force, whereas the components along the axis between them would balance out. 



Although the L1, L2, and L3 points are nominally unstable, it turns out that, at least in the restricted three-body problem, it is possible to find stable periodic orbits around these points in the plane perpendicular to the line joining the primaries. These perfectly periodic orbits, referred to as halo orbits, do not exist in a full n-body dynamical system such as the solar system. However, quasi-periodic (i.e. bounded but not precisely repeating) Lissajous orbits do exist in the n-body system. These quasi-periodic orbits are what all libration point missions to date have used. Although they are not perfectly stable, a relatively modest propulsive effort can allow a spacecraft to stay in a desired Lissajous orbit for an extended period of time. It also turns out that, at least in the case of Sun–Earth L1 missions, it is actually preferable to place the spacecraft in a large amplitude (100,000–200,000 km) Lissajous orbit instead of having it sit at the libration point, since this keeps the spacecraft off of the direct Sun–Earth line and thereby reduces the impacts of solar interference on the Earth–spacecraft communications links. 



The Sun–Earth L1 is ideal for making observations of the Sun. Objects here are never shadowed by the Earth or the Moon. The sample return capsule Genesis returned from L1 to Earth in 2004 after collecting solar wind particles there for three years. The Solar and Heliospheric Observatory (SOHO) is stationed in a Halo orbit at the L1 and the Advanced Composition Explorer (ACE) is in a Lissajous orbit, also at the L1 point. 



The Sun–Earth L2 offers an exceptionally favorable environment for a space-based observatory since its instruments can always point away from the Sun, Earth and Moon while maintaining an unobstructed view to deep space... The Wilkinson Microwave Anisotropy Probe (WMAP) is already in orbit around the Sun–Earth L2 and observes the full sky every six months, as the L2 point follows the Earth around the Sun WMAP. The future Herschel Space Observatory as well as the proposed James Webb Space Telescope will be placed at the Sun–Earth L2. Earth–Moon L2 would be a good location for a communications satellite covering the Moon's far side.



The Sun–Earth L3 is only a place where science fiction stories put a Counter-Earth planet sharing the same orbit with the Earth but on the opposite side of the Sun. 



By contrast, L4 and L5 are stable equilibrium points, provided the ratio of the primary masses is larger than 24.96. This is the case for the Sun-Earth and Earth-Moon systems, though by a small margin in the latter. When a body at these points is perturbed, it moves away from the point, but the Coriolis force then acts, and bends the object's path into a stable, kidney bean–shaped orbit around the point (as seen in the rotating frame of reference).



In the Sun–Jupiter system several thousand asteroids, collectively referred to as Trojan asteroids, are in orbits around the Sun–Jupiter L4 and L5 points (Greek and Trojan camp, respectively). Other bodies can be found in the Sun–Neptune (four bodies around L4) and Sun–Mars (5261 Eureka in L5) systems. There are no known large bodies in the Sun–Earth system's Trojan points, but clouds of dust surrounding the L4 and L5 points were discovered in the 1950s. 



Clouds of dust, called Kordylewski clouds, may also be present in the L4 and L5 of the Earth–Moon system. There is still controversy as to whether they actually exist, due to their extreme faintness; they might also be a transient phenomenon as the L4 and L5 points of the Earth–Moon system are unstable due to the perturbations of the Sun. Instead, the Saturnian Moon Tethys has two smaller Moons in its L4 and L5 points, Telesto and Calypso, respectively. The Saturnian Moon Dione also has two Lagrangian co-orbitals, Helene at its L4 point and Polydeuces at L5. The Moons wander azimuthally about the Lagrangian points, with Polydeuces describing the largest deviations, moving up to 32 degrees away from the Saturn–Dione L5 point. Tethys and Dione are hundreds of times more massive than their "escorts" and Saturn is far more massive still, which makes the overall system stable.

Appendix – Sphere of influence

Consider a unit-mass spacecraft moving in the proximity of a body of mass M2, which orbits around a primary body of much greater mass M1. The distance between the large bodies is R; no forces other than gravitation are considered. One is interested in defining a region of the space where the action of the second body is dominant. A precise boundary actually does not exist, but the transition from the dominance of the primary body to the prevailing action of the second body is quite smooth. Practical reasons suggest approximating the region with a sphere, whose radial extension is merely conventional. The most credited definitions of sphere of influence, which are due to Laplace and Hill, do not coincide: the former was interested in the transition from a computational model to another; the latter in the limit altitude of stable orbits. 


The concept of sphere of influence is therefore an approximation. Other forces, such as radiation pressure or the attraction of a fourth body, can be significant; the third object must also be of small enough mass that it introduces no additional complications through its own gravity. Orbits just within the sphere are not stable in the long term; from numerical methods it appears that stable satellite orbits are inside 1/2 to 1/3 of the Hill radius, with retrograde orbits being more stable than prograde orbits.



The spheres of influence of the planets in the solar system are given in Table 6.x. Data refers to the mean distance from the Sun. The planet with the largest sphere is Neptune; its great distance from the Sun amply compensates for its small mass relative to Jupiter. 

A.6.1 – Laplace sphere of influence

The motion of the spacecraft can be studied in a non-rotating reference frame with its origin in the center of M2. The only actions on the third body are the attractions of the central body  and of the primary body, which is seen as a perturbation :


[image: image195.wmf]2

2

r

m

=

F





[image: image196.wmf]b

r

m

2

3

1

cos

3

1

+

=

DF

R


where  is the distance of the spacecraft from the second body. If the motion of the spacecraft is analyzed in a non-rotating frame centered on the primary body, the main and disturbing forces in the proximity of the second body are instead
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where 
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 is the distance of the spacecraft from the primary body. According to Laplace, if one desires to neglect the perturbing action and retain only the main action, the two approaches can be considered equivalent when
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It is convenient to underline this equivalence is conventional, without any knowledge of the eventual errors.


The radius provided by the above equation defines a surface that is rotationally symmetric about an axis joining the massive bodies. Its shape differs little from a sphere; the ratio of the largest (
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) and smallest (along the axis) values of  is about 1.15. For convenience the surface is made spherical by replacing the square root with unity (this is equivalent to select the largest sphere tangent to the surface). The sphere of radius
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is known as Laplace sphere of influence or simply sphere of influence.



The Earth’s sphere of influence has a radius of about 924,000 km, and comfortably contains the orbit of the Moon, whose sphere of influence extends out to 66,200 km. 

A.6.2 – Hill sphere

The definition of the gravitational sphere of influence, which is known as Hill sphere, is due to the American astronomer G. W. Hill. It is also called the Roche sphere because the French astronomer E. Roche independently described it.



The Hill sphere is derived by assuming a reference frame rotating about the main body with the same angular frequency as the second body, and considering the three vector fields due to the centrifugal force and the attractions of the massive bodies. The Hill sphere is the largest sphere within which the sum of the three fields is directed towards the second body. A small third body can orbit the second within the Hill sphere, where this resultant force is centripetal. The Hill sphere extends between the Lagrangian points L1 and L2, which lie along the line of centers of the two bodies. The region of influence of the second body is shortest in that direction, and so it acts as the limiting factor for the size of the Hill sphere. Beyond that distance, a third object in orbit around the second would spend at least part of its orbit outside the Hill sphere, and would be progressively perturbed by the main body until would end up orbiting the second body.



The distance  of L1 and L2 from the smaller body is obtained by equating the attractive accelerations of the two primaries to the centrifugal acceleration
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where the upper sign applies to L2 and the lower to L1. By replacing
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one obtains
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and therefore the radius  of the Hill sphere of the smaller body
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The Hill sphere for the Earth thus extends out to about 1.5 106 km (0.01 AU); the radius of the Moon’s sphere of influence is close to 61,500 km. 
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